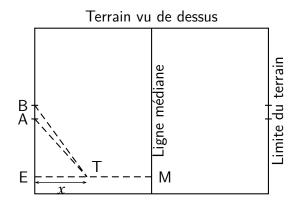


Annales 2016 - Trigonométrie

I Sujet: Bac S – Métropole – 20 juin 2016

Lors d'un match de rugby, un joueur doit transformer un essai qui a été marqué au point E (voir figure ci-contre) situé à l'extérieur du segment [AB].

La transformation consiste à taper le ballon par un coup de pied depuis un point T que le joueur a le droit de choisir n'importe où sur le segment [EM] perpendiculaire à la droite (AB) sauf en E. La transformation est réussie si le ballon passe entre les poteaux repérés par les points A et B sur la figure.



Pour maximiser ses chances de réussite, le joueur tente de déterminer la position du point T qui rend l'angle \widehat{ATB} le plus grand possible.

Le but de cet exercice est donc de rechercher s'il existe une position du point T sur le segment [EM] pour laquelle l'angle \widehat{ATB} est maximum et, si c'est le cas, de déterminer une valeur approchée de cet angle. Dans toute la suite, on note x la longueur ET, qu'on cherche à déterminer.

Les dimensions du terrain sont les suivantes : EM = 50 m, EA = 25 m et AB = 5,6 m . On note α la mesure en radian de l'angle $\widehat{\text{ETA}}$, β la mesure en radian de l'angle $\widehat{\text{ETB}}$ et γ la mesure en radian de l'angle $\widehat{\text{ATB}}$.

- 1. En utilisant les triangles rectangles ETA et ETB ainsi que les longueurs fournies, exprimer $\tan \alpha$ et $\tan \beta$ en fonction de x.
 - La fonction tangente est définie sur l'intervalle $\left]0 \text{ ; } \frac{\pi}{2} \right[\text{ par } \tan x = \frac{\sin x}{\cos x}.$
- 2. Montrer que la fonction tan est strictement croissante sur l'intervalle $\left]0\right.$; $\frac{\pi}{2}\left[$.
- 3. L'angle \widehat{ATB} admet une mesure γ appartenant à l'intervalle $\left]0 \right.; \left.\frac{\pi}{2}\right[$, résultat admis ici, que l'on peut observer sur la figure.

On admet que, pour tous réels
$$a$$
 et b de l'intervalle $\left]0$; $\frac{\pi}{2}\right[$, $\tan(a-b)=\frac{\tan a - \tan b}{1 + \tan a \times \tan b}$. Montrer que $\tan \gamma = \frac{5,6x}{x^2 + 765}$.

- 4. L'angle \widehat{ATB} est maximum lorsque sa mesure γ est maximale. Montrer que cela correspond à un minimum sur l'intervalle]0; 50] de la fonction f définie par : $f(x) = x + \frac{765}{x}$.
 - Montrer qu'il existe une unique valeur de x pour laquelle l'angle \widehat{ATB} est maximum et déterminer cette valeur de x au mètre près ainsi qu'une mesure de l'angle \widehat{ATB} à 0,01 radian près.

Correction: Bac S - Métropole - 20 juin 2016

1.

$$\tan \alpha = \frac{EA}{ET} = \frac{25}{r}$$
 $\tan \beta = \frac{EB}{ET} = \frac{30.6}{r}$

2. Les fonctions $x \mapsto \sin x$ et $x \mapsto \cos x$ sont définies et dérivables sur $]0, \frac{\pi}{2}[$. Puisque la fonction cosinus ne s'annule pas sur $]0, \frac{\pi}{2}[$, on en déduit, par quotient, que la fonction $x \mapsto \tan x$ est dérivable sur $]0, \frac{\pi}{2}[$. Pour tout nombre réel x appartenant à $]0, \frac{\pi}{2}[$, on a :

$$\tan'(x) = \frac{\cos x \times \cos x - \sin x \times (-\cos x)}{(\cos x)^2} = \frac{\sin^2 x + \cos^2 x}{\cos^2 x} = \frac{1}{\cos^2 x}$$

Puisque tan' > 0 sur $]0, \frac{\pi}{2}[$, alors

La fonction tangente est strictement croissante sur $\left]0,\frac{\pi}{2}\right[$

3. On a $\widehat{ATB} = \widehat{ETB} - \widehat{ETA}$, soit $\gamma = \beta - \alpha$. Par suite :

$$\tan \gamma = \tan(\beta - \alpha) = \frac{\tan \alpha - \tan \beta}{1 + \tan \alpha \tan \beta} = \frac{\frac{30,6}{x} - \frac{25}{x}}{1 + \frac{30,6}{x} \times \frac{25}{x}}$$

$$= \frac{\frac{5,6}{x}}{1 + \frac{765}{x^2}} = \frac{\frac{5,6}{x}}{\frac{x^2 + 765}{x^2}} = \frac{5,6}{x} \times \frac{x^2}{x^2 + 765}$$

$$= \frac{5,6x}{x^2 + 765}$$

$$\tan \gamma = \frac{5,6x}{x^2 + 765}$$

4. L'angle \widehat{ATB} est maximal lorsque sa mesure γ l'est. Puisque γ appartient à l'intervalle $]0,\frac{\pi}{2}[$ on en déduit, la fonction tangente étant strictement croissante sur $]0,\frac{\pi}{2}[$, que γ est maximal si et seulement si $\tan\gamma$ est maximal.

S'il existe, le maximum de $\tan \gamma$ est ainsi le maximum, sur]0,50], de la fonction g définie par $g(x)=\frac{5,6x}{x^2+765}$. Remarque :

Pour démontrer que g admet, sur]0,50], un maximum atteint pour une unique valeur de x, il suffit d'étudier les variations de g, ce qui ne pose aucun problème...

On peut aussi procéder de la manière suivante :

Puisque la fonction g ne s'annule pas sur l'intervalle]0,50], on peut définir, sur]0,50], la fonction $\frac{1}{g}$. La fonction g est strictement positive sur]0,50] et la fonction inverse est strictement décroissante sur $]0,+\infty[$: les fonctions g et $\frac{1}{g}$ ont donc des sens de variation contraires.

Puisque $f = 5, 6 \times \frac{1}{g}$, les fonctions f et $\frac{1}{g}$ ont les mêmes variations : les fonctions f et g ont donc des variations contraires.

Le maximum de g 1 sur]0,50] est obtenu en une valeur de x pour laquelle f admet un minimum

La fonction f est dérivable sur]0,50] et, pour tout nombre réel x appartenant à]0,50] :

$$f'(x) = 1 - \frac{765}{x^2} = \frac{x^2 - 765}{x^2} = \frac{x + \sqrt{765}}{x}(x - \sqrt{765})$$

Puisque $x \in]0,50]$, alors $x + \sqrt{765} > 0$:

le signe de f'(x) est donc celui de $x - \sqrt{765}$

On en déduit que f est strictement décroissante sur $]0,\sqrt{765}]$ et strictement croissante sur $[\sqrt{765},50]$: f admet donc, sur]0,50], un minimum atteint pour $x=\sqrt{765}$.

L'angle $\widehat{\text{ATB}}$ est maximal pour une unique valeur de x, égale à $\sqrt{765}\,\text{m}$

Une valeur approchée de x, au mètre prés, est 28 m

Une valeur approchée de l'angle ATB, à 0,01 radian près est 0,1, soit environ 5,78ř

^{1.} Sous réserve d'existence