

Annales 2016 - Nombres complexes

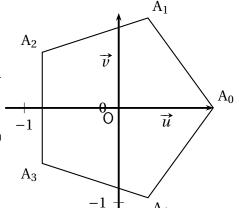
I Sujet: Bac S – Pondichery – 22 avril 2016

L'objectif de cet exercice est de trouver une méthode pour construire à la règle et au compas un pentagone régulier.

Dans le plan complexe muni d'un repère orthonormé direct $(O; \overrightarrow{u}, \overrightarrow{v})$, on considère le pentagone régulier $A_0A_1A_2A_3A_4$, de centre O tel que $\overrightarrow{OA_0} = \overrightarrow{u}$.

On rappelle que dans le pentagone régulier $A_0A_1A_2A_3A_4$, ci-contre :

- les cinq côtés sont de même longueur;
- les points A₀, A₁, A₂, A₃ et A₄ appartiennent au cercle trigonométrique;
- pour tout entier k appartenant à $\{0 ; 1 ; 2 ; 3\}$ on a $\left(\overrightarrow{OA_k}; \overrightarrow{OA_{k+1}}\right) = \frac{2\pi}{5}$.



- 1. On considère les points B d'affixe -1 et J d'affixe $\frac{i}{2}$. Le cercle $\mathscr C$ de centre J et de rayon $\frac{1}{2}$ coupe le segment [BJ] en un point K. Calculer BJ, puis en déduire BK.
- 2. (a) Donner sous forme exponentielle l'affixe du point A2. Justifier brièvement.
 - (b) Démontrer que $BA_2^2 = 2 + 2\cos\left(\frac{4\pi}{5}\right)$.
 - (c) Un logiciel de calcul formel affiche les résultats ci-dessous, que l'on pourra utiliser sans justification :

•	► Calcul formel					
1	cos (4*pi/5)					
	$\rightarrow \frac{1}{4} \left(-\sqrt{5} - 1 \right)$					
2	sqrt((3 - sqrt(5))/2)					
	$\to \frac{1}{2} \left(\sqrt{5} - 1 \right)$					

« sqrt » signifie « racine carrée »

En déduire, grâce à ces résultats, que $BA_2 = BK$.

3. Dans le repère $(O; \overrightarrow{u}, \overrightarrow{v})$ donné en annexe, construire à la règle et au compas un pentagone régulier. N'utiliser ni le rapporteur ni les graduations de la règle et laisser apparents les traits de construction.

II Sujet: Bac S – Liban – 31 mai 2016

On considère la suite (z_n) de nombres complexes définie pour tout entier naturel n par :

$$\begin{cases} z_0 = 0 \\ z_{n+1} = \frac{1}{2} i \times z_n + 5 \end{cases}$$

Dans le plan rapporté à un repère orthonormé, on note M_n le point d'affixe z_n .

On considère le nombre complexe $z_A = 4 + 2i$ et A le point du plan d'affixe z_A .

- 1. Soit (u_n) la suite définie pour tout entier naturel n par $u_n=z_n-z_{\mathsf{A}}$.
 - (a) Montrer que, pour tout entier naturel n, $u_{n+1} = \frac{1}{2}i \times u_n$.
 - (b) Démontrer que, pour tout entier naturel n:

$$u_n = \left(\frac{1}{2}\mathsf{i}\right)^n (-4 - 2\mathsf{i}).$$

2. Démontrer que, pour tout entier naturel n, les points A, M_n et M_{n+4} sont alignés.

III Sujet : Bac S – Amérique du Nord – 1 juin 2016

Le plan complexe est rapporté à un repère orthonormé direct $0; \vec{u}, \vec{v}$).

On considère le point A d'affixe 4, le point B d'affixe 4i et les points C et D tels que ABCD est un carré de centre O.

Pour tout entier naturel non nul n, on appelle M_n le point d'affixe $z_n = (1+i)^n$.

- 1. Écrire le nombre 1+i sous forme exponentielle.
- 2. Montrer qu'il existe un entier naturel n_0 , que l'on précisera, tel que, pour tout entier $n \ge n_0$, le point M_n est à l'extérieur du carré ABCD.

IV Sujet : Bac S – Centres étrangers – 8 juin 2016

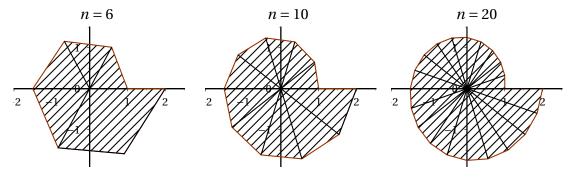
On veut modéliser dans le plan la coquille d'un nautile à l'aide d'une ligne brisée en forme de spirale. On s'intéresse à l'aire délimitée par cette ligne.

On munit le plan d'un repère orthonormal direct $(O; \vec{u}; \vec{v})$.

Soit n un entier supérieur ou égal à 2. Pour tout entier k allant de 0 à n, on définit les nombres complexes $z_k = \left(1 + \frac{k}{n}\right) \mathrm{e}^{\mathrm{i}\frac{2k\pi}{n}}$ et on note M_k le point d'affixe z_k .

Dans ce modèle, le pourtour du nautile est la ligne brisée reliant tous les points M_k avec $0 \le k \le n$.

Par exemple, pour les entiers n = 6, n = 10 et n = 20, on obtient les figures ci-dessous.



Partie A : Ligne brisée formée à partir de sept points

Dans cette partie, on suppose que n=6. Ainsi, pour $0 \le k \le 6$, on a $z_k = \left(1 + \frac{k}{6}\right) e^{i\frac{2k\pi}{6}}$.

- 1. Déterminer la forme algébrique de z_1 .
- 2. Vérifier que z_0 et z_6 sont des entiers que l'on déterminera.
- 3. Calculer la longueur de la hauteur issue de M_1 dans le triangle OM_0M_1 puis établir que l'aire de ce triangle est égale à $\frac{7\sqrt{3}}{24}$.

Partie B : Ligne brisée formée à partir de n+1 points

Dans cette partie, n est un entier supérieur ou égal à 2.

- 1. Pour tout entier k tel que $0 \le k \le n$, déterminer la longueur OM_k .
- 2. Pour k entier tel que $0 \le k \le n-1$, déterminer une mesure des angles $(\overrightarrow{u}; \overrightarrow{OM_k})$ et $(\overrightarrow{u}; \overrightarrow{OM_{k+1}})$. En déduire une mesure de l'angle $(\overrightarrow{OM_k}; \overrightarrow{OM_{k+1}})$.
- 3. Pour k entier tel que $0 \le k \le n-1$, démontrer que la longueur de la hauteur issue de M_{k+1} dans le triangle OM_kM_{k+1} est égale à $\left(1+\frac{k+1}{n}\right) \times \sin\left(\frac{2\pi}{n}\right)$.
- 4. On admet que l'aire du triangle $\mathrm{OM}_k\mathrm{M}_{k+1}$ est égale à $a_k=\frac{1}{2}\sin\left(\frac{2\pi}{n}\right)\times\left(1+\frac{k}{n}\right)\left(1+\frac{k+1}{n}\right)$ et que l'aire totale délimitée par la ligne brisée est égale à $\mathrm{A}_n=a_0+a_1+\cdots+a_{n-1}$.

L'algorithme suivant permet de calculer l'aire A_n lorsqu'on entre l'entier n :

VARIABLES A est un nombre réel

k est un entier

n est un entier

TRAITEMENT Lire la valeur de n

A prend la valeur 0

Pour k allant de 0 à n-1

A prend la valeur $A + \frac{1}{2} \sin\left(\frac{2\pi}{n}\right) \times \left(1 + \frac{k}{n}\right) \left(1 + \frac{k+1}{n}\right)$

Fin Pour

SORTIE Afficher A

On entre dans l'algorithme n = 10

Recopier et compléter le tableau ci-dessous qui illustre le fonctionnement de l'algorithme.

k	0	1	2	3	4	5	6	7	8	9
A	0,323	0,711	1,170	1,705	2,322	3,027	3,826	4,726		

5. On admet que $A_2=0$ et que la suite (A_n) converge et que $\lim_{n\to+\infty}A_n=\frac{7\pi}{3}\approx 7,3.$

Recopier et compléter les lignes L6 et L13 de l'algorithme ci-après qui permet de déterminer le plus petit entier n tel que $A_n \ge 7,2$. On ne demande pas de déterminer n.

L1	VARIABLES :	A est un nombre réel				
L2		k est un entier				
L3		n est un entier				
L4	TRAITEMENT :	\imath prend la valeur 2				
L5		A prend la valeur 0				
L6		Tant que				
L7		n prend la valeur $n+1$				
L8		A prend la valeur 0				
L9		Pour k allant de 0 à $n-1$				
L10		A prend la valeur $A + \frac{1}{2}\sin\left(\frac{2\pi}{n}\right) \times \left(1 + \frac{k}{n}\right)\left(1 + \frac{k+1}{n}\right)$				
		Fin Pour				
L12		Fin Tant que				
L13	SORTIE:	Afficher				

V Sujet: Bac S – Antilles-Guyane – 20 juin 2016

On munit le plan complexe d'un repère orthonormé direct $(0; \vec{u}, \vec{v})$.

On note $\mathscr C$ l'ensemble des points M du plan d'affixe z tels que |z-2|=1.

- 1. Justifier que \mathscr{C} est un cercle, dont on précisera le centre et le rayon.
- 2. Soit a un nombre réel. On appelle $\mathscr D$ la droite d'équation y=ax.

 Déterminer le nombre de points d'intersection entre $\mathscr C$ et $\mathscr D$ en fonction des valeurs du réel a.

VI Sujet: Bac S – Métropole – 12 septembre 2016

On considère les nombres complexes z_n définis pour tout entier $n \ge 0$ par la donnée de z_0 , où z_0 est différent de 0 et de 1, et la relation de récurrence : $z_{n+1} = 1 - \frac{1}{z_n}$.

- 1. (a) Dans cette question, on suppose que $z_0 = 2$. Déterminer les nombres z_1 , z_2 , z_3 , z_4 , z_5 et z_6
 - (b) Dans cette question, on suppose que $z_0 = i$. Déterminer la forme algébrique des nombres complexes z_1 , z_2 , z_3 , z_4 , z_5 et z_6 .
 - (c) Dans cette question on revient au cas général où z_0 est un complexe donné. Que peut-on conjecturer pour les valeurs prises par z_{3n} selon les valeurs de l'entier naturel n?

 Prouver cette conjecture.
- 2. Déterminer z_{2016} dans le cas où $z_0 = 1 + i$.
- 3. Existe-t-il des valeurs de z_0 tel que $z_0 = z_1$? Que peut-on dire de la suite (z_n) dans ce cas?

VII Sujet : Bac S – Nouvelle Calédonie – 19 novembre 2016

La société « Bonne Mamie » utilise une machine pour remplir à la chaîne des pots de confiture. On note X la variable aléatoire qui à chaque pot de confiture produit associe la masse de confiture qu'il contient, exprimée en grammes.

Dans le cas où la machine est correctement réglée, on admet que X suit une loi normale de moyenne $\mu=125$ et d'écart-type σ .

- 1. (a) Pour tout nombre réel t positif, déterminer une relation entre $P(X \le 125 t)$ et $P(X \ge 125 + t)$.
 - (b) On sait que 2,3 % des pots de confiture contiennent moins de 121 grammes de confiture. En utilisant la relation précédente, déterminer $P(121 \le X \le 129).$
- 2. Déterminer une valeur arrondie à l'unité près de σ telle que $P(123 \le X \le 127) = 0.68$.

Dans la suite de l'exercice, on suppose que $\sigma = 2$.

- 3. On estime qu'un pot de confiture est conforme lorsque la masse de confiture qu'il contient est comprise entre 120 et 130 grammes.
 - (a) On choisit au hasard un pot de confiture de la production. Déterminer la probabilité que ce pot soit conforme. On donnera le résultat arrondi à 10^{-4} près.
 - (b) On choisit au hasard un pot parmi ceux qui ont une masse de confiture inférieure à 130 grammes. Quelle est la probabilité que ce pot ne soit pas conforme? On donnera le résultat arrondi à 10^{-4} près.
- 4. On admet que la probabilité, arrondie à 10⁻³ près, qu'un pot de confiture soit conforme est 0,988.
 On choisit au hasard 900 pots dans la production. On constate que 871 de ces pots sont conformes. Au seuil de 95 % peut-on rejeter l'hypothèse suivante : « La machine est bien réglée » ?

VIII Sujet: Bac S - Amérique du Sud - 22 novembre 2016

Pour chacune des trois propositions suivantes, indiquer si elle est vraie ou fausse et justifier la réponse choisie. Il est attribué **un point par réponse exacte correctement justifiée**. Une réponse non justifiée n'est pas prise en compte.

On munit le plan complexe d'un repère orthonormé direct $(O; \vec{u}, \vec{v})$.

Proposition 1

L'ensemble des points du plan d'affixe z tels que |z-4|=|z+2i| est une droite qui passe par le point A d'affixe 3i.

Proposition 2

Soit (E) l'équation $(z-1)(z^2-8z+25)=0$ où z appartient à l'ensemble $\mathbb C$ des nombres complexes. Les points du plan dont les affixes sont les solutions dans $\mathbb C$ de l'équation (E) sont les sommets d'un triangle rectangle.

Proposition 3

 $\frac{\pi}{3}$ est un argument du nombre complexe $\left(-\sqrt{3}+i\right)^8$.

Correction: Bac S - Pondichery - 22 avril 2016

1. Le théorème de Pythagore appliqué au triangle OBJ rectangle en O donne :

$$BJ^{2} = BO^{2} + OJ^{2} = 1^{2} + \left(\frac{1}{2}\right)^{2} = \frac{5}{4} \Rightarrow BJ = \sqrt{\frac{5}{4}} = \frac{\sqrt{5}}{2}.$$

$$BK = BJ - KI = \frac{\sqrt{5}}{2} - \frac{1}{2} = \frac{\sqrt{5} - 1}{2}$$

2. (a) L'affixe de A_2 a pour module 1 et pour argument $\frac{2\pi}{5} + \frac{2\pi}{5} = \frac{4\pi}{5}$. Donc $z_{A_2} = e^{i\frac{4\pi}{5}}$

(b)
$$BA_2^2 = |z_{A_2} - z_B|^2 = \left| e^{i\frac{4\pi}{5}} - (-1) \right|^2 = \left| e^{i\frac{4\pi}{5}} + 1 \right|^2 = \left| \cos\frac{4\pi}{5} + 1 + i\sin\frac{4\pi}{5} \right|^2$$

 $= \left(\cos\frac{4\pi}{5} + 1 \right)^2 + \sin^2\frac{4\pi}{5} = \cos^2\frac{4\pi}{5} + 2\cos\frac{4\pi}{5} + 1 + \sin^2\frac{4\pi}{5} = 2 + 2\cos\left(\frac{4\pi}{5}\right)$

(c) D'après le logiciel de calcul formel, $\cos\frac{4\pi}{5}=\frac{1}{4}\left(-\sqrt{5}-1\right)$ donc :

$$BA_2^2 = 2 + 2 \times \frac{1}{4} \left(-\sqrt{5} - 1 \right) = 2 - \frac{1}{2} - \frac{\sqrt{5}}{2} = \frac{3 - \sqrt{5}}{2}$$

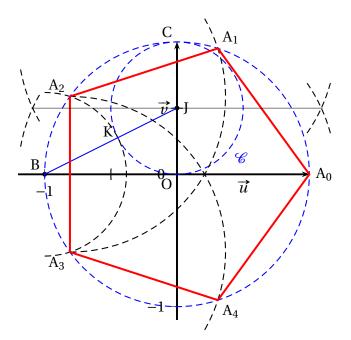
Donc $BA_2 = \sqrt{\frac{3-\sqrt{5}}{2}} = \frac{1}{2} \left(\sqrt{5} - 1 \right)$ d'après le logiciel de calcul formel.

On en déduit que $BA_2 = BK$.

- 3. Procédé de construction (voir figure page ??) :
 - Soit C le point de coordonnées (0 ; 1). La médiatrice de [OC] coupe l'axe des ordonnées au point J de coordonnées $\left(0\;;\;\frac{1}{2}\right)$.

On place le point B sur l'axe des abscisses, d'abscisse négative tel que OB = 2OJ, on construit [BJ] et le cercle $\mathscr C$ centré en J passant par O donc de rayon $\frac{1}{2}$;

- on obtient le point K à l'intersection du cercle \mathscr{C} et du segment [BJ];
- ullet le cercle de centre B de rayon BK coupe le cercle unitaire aux points A_2 et A_3 ;
- le cercle de centre A₂ passant par A₃ recoupe le cercle unitaire en A₁;
- le cercle de centre A₃ passant par A₂ recoupe le cercle unitaire en A₄;
- le point A₀ est le point d'affixe 1.



Correction: Bac S - Liban - 31 mai 2016

On considère la suite (z_n) de nombres complexes définie pour tout entier naturel n par : $\begin{cases} z_0 = 0 \\ z_{n+1} = \frac{1}{2} i \times z_n + 5 \end{cases}$

Dans le plan rapporté à un repère orthonormé, on note M_n le point d'affixe z_n .

On considère le nombre complexe $z_A = 4 + 2i$ et A le point du plan d'affixe z_A .

- 1. Soit (u_n) la suite définie pour tout entier naturel n par $u_n=z_n-z_{\mathsf{A}}$.
 - (a) Montrons que, pour tout entier naturel n, $u_{n+1} = \frac{1}{2}\mathbf{i} \times u_n$.

 Pour tout entier naturel n, $u_{n+1} = z_{n+1} z_{\mathsf{A}} = \frac{1}{2}\mathbf{i} \times z_n + 5 (4+2\mathbf{i}) = \frac{1}{2}\mathbf{i} \times z_n + 1 2\mathbf{i}$.

 Pour tout entier naturel n, $\frac{1}{2}\mathbf{i} \times u_n = \frac{1}{2}\mathbf{i}(z_n z_{\mathsf{A}}) = \frac{1}{2}\mathbf{i}(z_n 4 2\mathbf{i}) = \frac{1}{2}\mathbf{i} \times z_n + 1 2\mathbf{i}$.

 Et pour tout entier naturel n, $u_{n+1} = \frac{1}{2}\mathbf{i} \times u_n$.
 - (b) On va démontrer par récurrence que, pour tout n, la propriété $\mathscr{P}_n:\left(\frac{1}{2}\mathsf{i}\right)^n(-4-2\mathsf{i})$ est vraie.
 - Initialisation : $u_0 = z_0 z_A = -z_A = -4 2i$; pour n = 0, $\left(\frac{1}{2}i\right)^n (-4 2i) = \left(\frac{1}{2}i\right)^0 (-4 2i) = -4 2i$ Donc la propriété est vraie pour n = 0.
 - *Hérédité* : on suppose la propriété vraie au rang quelconque $p \le 0$, c'est-à-dire $\left(\frac{1}{2}i\right)^p (-4-2i)$; on va la démontrer au rang p+1.

$$u_{p+1} = \frac{1}{2}iu_n = \frac{1}{2}i \times \left(\frac{1}{2}i\right)^p (-4 - 2i) = \left(\frac{1}{2}i\right)^{p+1} (-4 - 2i)$$

Donc la propriété est vraie au rang p+1.

■ La propriété est vraie au rang 0, elle est héréditaire, donc, d'après le principe de récurrence, elle est vraie pour tout entier naturel *n*.

Pour tout entier naturel n, $u_n = \left(\frac{1}{2}i\right)^n (-4-2i)$

2. Démontrons que, pour tout entier naturel n, les points A, \mathbf{M}_n et \mathbf{M}_{n+4} sont alignés.

Le vecteur $\overrightarrow{\mathrm{AM}_n}$ a pour affixe $u_n = z_n - z_{\mathsf{A}}$, et le vecteur $\overrightarrow{\mathrm{AM}_{n+4}}$ a pour affixe $u_{n+4} = z_{n+4} - z_{\mathsf{A}}$.

Mais d'après la question précédente, pour tout entier naturel n, $u_{n+4} = \left(\frac{1}{2}i\right)^{n+4} (-4-2i)$ et $u_n = \left(\frac{1}{2}i\right)^n (-4-2i)$.

On en déduit que pour tout entier naturel n, $u_{n+4} = \left(\frac{1}{2}i\right)^4 u_n$.

$$\mathsf{Mais} \left(\frac{1}{2}\mathsf{i}\right)^4 = \frac{1}{16}$$

On en déduit que pour tout entier naturel n, $u_{n+4} = \frac{1}{16}u_n$ et $\overrightarrow{AM}_{n+4} = \frac{1}{16}\overrightarrow{AM}_n$

Ce qui prouve que, pour tout entier naturel n, les vecteurs sont colinéaires et par conséquent les points A, M_n et M_{n+4} sont alignés.

Correction: Bac S - Amérique du Nord - 1 juin 2016

1.
$$1 + \mathbf{i} = \sqrt{2} \left(\frac{\sqrt{2}}{2} + \mathbf{i} \frac{\sqrt{2}}{2} \right)$$

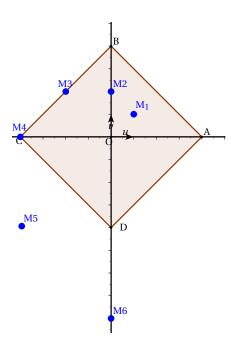
La distance maximale entre O et un point quelconque d'un côté du carré est 4.

Un point M_n sort du carré si $OM_n > 4$

or
$$OM_n = |z_n| = \left(\sqrt{2}\right)^n$$

$$OM_n > 4? \left(\sqrt{2}\right)^n > 4$$
$$? \left(\sqrt{2}\right)^n > \left(\sqrt{2}\right)^4$$
$$? n > 4$$

2. Donc pour $n_0=5$, pour tout entier $n \ge n_0$, le point \mathbf{M}_n est à l'extérieur du carré ABCD



Correction: Bac S - Centres étrangers - 8 juin 2016

Candidat/e/s n'ayant pas choisi la spécialité mathématique

On veut modéliser dans le plan la coquille d'un nautile à l'aide d'une ligne brisée en forme de spirale. On s'intéresse à l'aire délimitée par cette ligne.

On munit le plan d'un repère orthonormal direct $(O; \vec{u}; \vec{v})$.

Soit n un entier supérieur ou égal à 2. Pour tout entier k allant de 0 à n, on définit les nombres complexes $z_k = \left(1 + \frac{k}{n}\right) \mathrm{e}^{\mathrm{i} \frac{2k\pi}{n}}$ et on note M_k le point d'affixe z_k .

Dans ce modèle, le pourtour du nautile est la ligne brisée reliant tous les points M_k avec $0 \le k \le n$.

Partie A : Ligne brisée formée à partir de sept points

Dans cette partie, on suppose que n = 6.

1. Déterminons la forme algébrique de z_1 .

On a:
$$z_1 = \left(1 + \frac{1}{6}\right)e^{i\frac{2\pi}{6}} = \left(\frac{7}{6}\right)\left(\cos\left(\frac{\pi}{3}\right) + i\sin\left(\frac{\pi}{3}\right)\right) = \frac{7}{6}\left(\frac{1}{2} + i\frac{\sqrt{3}}{2}\right) = \frac{7}{12} + i\frac{7\sqrt{3}}{12}.$$

- 2. On a $z_0 = e^0 = 1$ et $z_6 = \left(1 + \frac{6}{6}\right)e^{i2\pi} = 2$.
- 3. Calculons la longueur de la hauteur issue de M_1 dans le triangle OM_0M_1 .

Soit H le pied de la hauteur issue de M_1 dans le triangle OM_0M_1 . Comme O et M_0 sont pour abscisse 0, on a : $M_1H = \frac{7\sqrt{3}}{12}$.

L'aire du triangle OM_0M_1 est égale à : $\frac{1}{2}OM_0 \times M_1H = \frac{7\sqrt{3}}{24}$.

Partie B : Ligne brisée formée à partir de n+1 points

Dans cette partie, n est un entier supérieur ou égal à 2.

- 1. Pour tout entier k tel que $0 \le k \le n$, déterminons la longueur OM_k . On a $\mathrm{OM}_k = |z_k| = 1 + \frac{k}{n}$, car pour tout entier naturel n est un entier supérieur ou égal à 2, tout entier k tel que $0 \le k \le n$, le module de $\mathrm{e}^{\mathrm{i} \frac{2k\pi}{n}}$ vaut 1.
- 2. Soit k entier tel que $0 \le k \le n-1$.

3. Pour k entier tel que $0 \le k \le n-1$, calculons la longueur de la hauteur issue de M_{k+1} dans le triangle OM_kM_{k+1} .

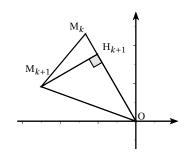
Soit H_{k+1} le pied de la hauteur issue de M_{k+1} dans le triangle OM_kM_{k+1} .

On a :
$$\frac{\mathbf{M}_{k+1}\mathbf{H}_{k+1}}{\mathbf{OM}_{k+1}} = \sin\left(\overrightarrow{\mathbf{OM}_k}\;;\; \overrightarrow{\mathbf{OM}_{k+1}}\right)$$
.

$$\mathsf{Mais}\ \mathsf{OM}_{k+1} = 1 + \frac{k+1}{n}\ \mathsf{et}\ \mathsf{sin}\Big(\overrightarrow{\mathsf{OM}_k}\ ;\ \overrightarrow{\mathsf{OM}_{k+1}}\Big) = \mathsf{sin}\Big(\frac{2\pi}{n}\Big).$$

On en déduit que pour k entier tel que $0 \le k \le n-1$,

$$\mathbf{M}_{k+1}\mathbf{H}_{k+1} = \left(1 + \frac{k+1}{n}\right)\sin\left(\frac{2\pi}{n}\right)$$



4. On admet que l'aire du triangle OM_kM_{k+1} est égale à $a_k = \frac{1}{2}\sin\left(\frac{2\pi}{n}\right) \times \left(1 + \frac{k}{n}\right)\left(1 + \frac{k+1}{n}\right)$ et que l'aire totale délimitée par la ligne brisée est égale à $A_n = a_0 + a_1 + \dots + a_n$.

L'algorithme suivant permet de calculer l'aire A_n lorsqu'on entre l'entier n :

k est un entier

n est un entier

TRAITEMENT Lire la valeur de n

A prend la valeur 0

Pour k allant de 0 à n-1

A prend la valeur
$$A + \frac{1}{2} \sin\left(\frac{2\pi}{n}\right) \times \left(1 + \frac{k}{n}\right) \left(1 + \frac{k+1}{n}\right)$$

Fin Pour

SORTIE Afficher *n*

On entre dans l'algorithme n = 10

On obtient le tableau ci-dessous qui illustre le fonctionnement de l'algorithme.

k	0	1	2	3	4	5	6	7	8	9
A	0,323	0,711	1,170	10705	2,322	3,027	3,826	4,726	5,731	6,848

5. On admet que $A_2 = 0$ et que la suite (A_n) converge et que $\lim_{n \to +\infty} A_n = \frac{7\pi}{3} \approx 7,3$.

En L6 tant que A < 7,2

En L13 Afficher *n*.

Correction: Bac S - Antilles-Guyane - 20 juin 2016

On munit le plan complexe d'un repère orthonormé direct $(0; \vec{u}, \vec{v})$.

On note $\mathscr C$ l'ensemble des points M du plan d'affixe z tels que |z-2|=1.

1. Soit A le point d'affixe 2.

 $|z-2|=1 \iff AM=1$ donc \mathscr{C} est le cercle de centre A et de rayon 1.

2.
$$M(z) \in \mathcal{C} \cap \mathcal{D} \iff \begin{cases} |z-2| = 1 \\ y = ax \end{cases} \iff \begin{cases} y = ax \\ |x-2+iax| = 1 \end{cases}$$
$$|x-2+iax| = 1 \iff (x-2)^2 + a^2x^2 = 1 \iff (1+a^2)x^2 - 4x + 3 = 0.$$

Le discriminant est $\Delta = 16 - 12(1 + a^2) = 4 - 12a^2 = 4(1 - 3a^2)$.

Pour qu'il y ait une intersection, il faut que cette équation ait au moins une solution réelle, donc que $\Delta \geqslant 0$.

On doit avoir $1 - 3a^2 \ge 0$, donc $\left| -\sqrt{\frac{1}{3}} \le a \le \sqrt{\frac{1}{3}} \right|$.

On peut alors distinguer trois cas:

- Premier cas. $a \in \left[-\infty ; -\frac{\sqrt{3}}{3} \right] \cup \left[\frac{\sqrt{3}}{3} ; \infty \right]$: aucun point d'intersection.
- **Deuxième cas.** $a = \pm \frac{\sqrt{3}}{3}$: un seul point d'intersection (la droite et le cercle sont tangents).
- Troisième cas. $a \in \left[-\frac{\sqrt{3}}{3}; \frac{\sqrt{3}}{3} \right]$: deux points d'intersection.

Correction: Bac S - Métropole - 12 septembre 2016

On considère les nombres complexes z_n définis pour tout entier $n \ge 0$ par la donnée de z_0 , où z_0 est différent de 0 et de 1, et la relation de récurrence : $z_{n+1} = 1 - \frac{1}{z_n}$.

1. (a) Dans cette question, on suppose que $z_0 = 2$.

$$z_1=1-\frac{1}{z_0}=1-\frac{1}{2}=\frac{1}{2}$$
; $z_2=1-\frac{1}{z_1}=1-2=-1$; $z_3=1-\frac{1}{z_2}=1-\frac{1}{-1}=1+1=2$; ensuite on retrouve $z_4=\frac{1}{2}$, $z_5=-1$ et $z_6=2$.

(b) Dans cette question, on suppose que $z_0 = i$

$$\begin{split} z_1 &= 1 - \frac{1}{\mathsf{i}} = 1 + \mathsf{i} \, ; \, z_2 = 1 - \frac{1}{z_1} = 1 - \frac{1}{1 + \mathsf{i}} = 1 - \frac{1 - \mathsf{i}}{1 + \mathsf{i}} = \frac{2 - 1 + \mathsf{i}}{2} = \frac{1 + \mathsf{i}}{2} \, ; \\ z_3 &= 1 - \frac{1}{z_2} = 1 - \frac{1}{\frac{1 + \mathsf{i}}{2}} = 1 - \frac{2}{1 + \mathsf{i}} = \frac{1 + \mathsf{i} - 2}{1 + \mathsf{i}} = \frac{-1 + \mathsf{i}}{1 + \mathsf{i}} = \frac{(-1 + \mathsf{i})(1 - \mathsf{i})}{(1 + \mathsf{i})(1 - \mathsf{i})} = \frac{-1 + 1 + \mathsf{i} + \mathsf{i}}{1 + \mathsf{i}} = \mathsf{i} = z_0 \, ; \end{split}$$

ensuite on retrouve $z_4 = z_1 = 1 + i$, puis $z_5 = \frac{1+i}{2}$ et $z_6 = i$.

(c) Dans cette question on revient au cas général où z_0 est un complexe donné.

Des résultats de la question précédente, on peut conjecturer que $z_{3n}=z_0$, pour $n\in\mathbb{N}$.

On démontre cette conjecture par récurrence sur n:

- **Initialisation**: on a bien $z_{3\times 0}=z_0$. L'égalité est vraie au rang 0.
- **Hérédité** : supposons que pour $n \in \mathbb{N}$, $z_{3n} = z_0$, alors

$$z_{3(n+1)} = z_{3n+3} = 1 - \frac{1}{z_{3n+2}} = 1 - \frac{1}{1 - \frac{1}{z_{3n+1}}} = 1 - \frac{z_{3n+1}}{z_{3n+1}} = \frac{z_{3n+1} - 1 - z_{3n+1}}{z_{3n+1} - 1} = \frac{z_{3n+1} - 1 - z_{3n+1}}{z_{3n+1} - 1} = \frac{-1}{1 - \frac{1}{z_{3n+1}}} = \frac{-1}{1 - \frac{1}{z_{3n+1}}} = \frac{z_{3n+1} - 1 - z_{3n+1}}{z_{3n+1} - 1} = \frac{z_{3n+1} - 1 - z_{3n+1}}{z_{3n+1} - 1} = \frac{-1}{1 - \frac{1}{z_{3n+1}}} = z_{3n} = z_0.$$

- Conclusion : on a donc démontré que $z_{3\times 0}=z_0$ et si $z_{3n}=z_0$, alors $z_{3(n+1)}=z_0$: d'après le principe de récurrence on a démontré que quel que soit $n\in\mathbb{N}$, $z_{3n}=z_0$.
- 2. Comme $2016 = 3 \times 672$, on a d'après la question précédente $z_{2016} = z_0 = 1 + i$.
- 3. On a $z_0 = z_1 \iff z_0 = 1 \frac{1}{z_0}$ (avec $z_0 \neq 0$) ou encore

$$z_0^2 = z_0 - 1 \iff z_0^2 - z_0 + 1 = 0 \iff \left(z_0 - \frac{1}{2}\right)^2 - \frac{1}{4} + 1 = 0 \iff \left(z_0 - \frac{1}{2}\right)^2 + \frac{3}{4} = 0 \iff \left(z_0 - \frac{1}{2} + i\frac{\sqrt{3}}{2}\right) \left(z_0 - \frac{1}{2} - i\frac{\sqrt{3}}{2}\right) \left(z_0 -$$

$$0 \iff \begin{cases} z_0 - \frac{1}{2} - i\frac{\sqrt{3}}{2} &= 0 \\ z_0 - \frac{1}{2} + i\frac{\sqrt{3}}{2} &= 0 \end{cases} \iff \begin{cases} z_0 &= \frac{1}{2} + i\frac{\sqrt{3}}{2} \\ z_0 &= \frac{1}{2} - i\frac{\sqrt{3}}{2} \end{cases}$$

If y a donc deux valeurs de z_0 pour lesquelles $z_1 = z_0$.

Dans ces deux cas, $z_2 = 1 - \frac{1}{z_1} = 1 - \frac{1}{z_0} = z_1$, et ainsi de suite, donc les suites (z_n) sont constantes.

Correction: Bac S - Nouvelle Calédonie - 19 novembre 2016

La société « Bonne Mamie » utilise une machine pour remplir à la chaàone des pots de confiture. On note X la variable aléatoire qui à chaque pot de confiture produit associe la masse de confiture qu'il contient, exprimée en grammes.

Dans le cas où la machine est correctement réglée, on admet que X suit une loi normale de moyenne $\mu=125$ et d'écart-type σ .

- 1. (a) La fonction de Gauss est symétrique par rapport à la droite d'équation $x = \mu$ c'est-à-dire x = 125. On a donc, pour tout réel t positif, $P(X \le 125 - t) = P(X \ge 125 + t)$.
 - (b) On sait que 2.3% des pots de confiture contiennent moins de 121 grammes de confiture, donc P(X < 121) = 0.023.

$$P(121 \le X \le 129) = P(\overline{(X < 121) \cup (X > 129)})$$
$$= 1 - P(X < 121) - P(X > 129)$$
$$= 1 - P(X \le 121) - P(X \ge 129)$$

les évènements ($X \le 121$) et ($X \ge 129$) étant incompatibles.

D'après la question précédente, $P(X \le 121) = P(X \le 125 - 4) = P(X \ge 125 + 4) = P(X \ge 129)$; on en déduit : $P(121 \le X \le 129) = 1 - 2P(X \le 125 - 4) = 1 - 2P(X \le 121) = 1 - 0,046 = 0,954$.

2. On cherche une valeur arrondie à l'unité près de σ telle que $P(123 \le X \le 127) = 0,68$.

On se ramène à la loi normale centrée réduite de X en posant $Z = \frac{X - 125}{\sigma}$

$$123 \leqslant X \leqslant 127 \iff 123 - 125 \leqslant X - 125 \leqslant 127 - 125 \iff \frac{-2}{\sigma} \leqslant \frac{X - 125}{\sigma} \leqslant \frac{2}{\sigma}$$

On a alors :
$$P(123 \le X \le 127) = 0.68 \iff P\left(-\frac{2}{\sigma} \le Z \le \frac{2}{\sigma}\right) = 0.68.$$

à la calculatrice, on trouve l'intervalle centré en 0 correspondant soit $\frac{2}{\sigma}\approx 0,994$. à l'unité près, on prendra donc $\sigma\approx\frac{2}{0,994}\approx 2$ (ce qui est la valeur de σ supposée juste après dans l'énoncé!).

- 3. On estime qu'un pot de confiture est conforme lorsque la masse de confiture qu'il contient est comprise entre 120 et 130 grammes.
 - (a) À la calculatrice, la probabilité qu'un pot soit conforme correspond à $P(120 \le X \le 130) \approx 0,9876$.
 - (b) La probabilité qu'un pot ne soit pas conforme parmi ceux qui ont une masse de confiture inférieure à 130 grammes correspond à

$$\begin{split} P_{(X\leqslant 130)}\big(\overline{120\leqslant X\leqslant 130}\big) &= \frac{P\big(\overline{(120\leqslant X\leqslant 130)}\cap (X\leqslant 130)\big)}{P(X\leqslant 130)} \\ &= \frac{P(X\leqslant 120)}{P(X\leqslant 130)} \approx \frac{0,00621}{0,992379} \\ &\approx 6,1\times 10^{-3}. \end{split}$$

4. Comme $900 \ge 30$, $900 \times 0,988 \ge 5$ et $900 \times (1-0,988) \ge 5$, les conditions d'application du théorème de Moivre-Laplace sont vérifiées et un intervalle de fluctuation au seuil de 95% est :

$$I_{95\%} = \left[p - 1,96\sqrt{\frac{p(1-p)}{n}}; p + 1,96\sqrt{\frac{p(1-p)}{n}} \right]$$

$$= \left[0,988 - 1,96\sqrt{\frac{0,988(1-0,988)}{900}}; 0,988 + 1,96\sqrt{\frac{0,988(1-0,988)}{900}} \right]$$

$$\approx [0,980; 0,996].$$

Comme $f_{\rm obs} = \frac{871}{900} \approx 0,968 \notin I_{95\%}$, on rejette l'hypothèse « La machine est bien réglée » au seuil des 95%.

Correction: Bac S - Amérique du Sud - 22 novembre 2016

On munit le plan complexe d'un repère orthonormé direct $(O; \vec{u}, \vec{v})$.

Proposition 1

L'ensemble des points du plan d'affixe z tels que |z-4|=|z+2i| est une droite qui passe par le point A d'affixe 3i.

Proposition vraie

■ Soit B le point d'affixe b = 4 et C le point d'affixe c = -21; on appelle M le point d'affixe z.

$$|z-4| = |z+2i| \iff |z-b| = |z-c| \iff MB = MC$$

Donc l'ensemble des points M d'affixe z tels que $|z-4|=|z+2\mathrm{i}|$ est la médiatrice Δ du segment [BC].

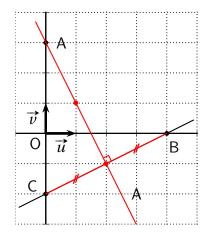
• On appelle *a* l'affixe du point A.

$$AB = |b - a| = |4 - 3i| = \sqrt{16 + 9} = 5$$

$$AC = |c - a| = |-21 - 31| = |-51| = 5$$

Donc le point A est à égale distance de B et de C; il appartient donc à la droite Δ , médiatrice de [BC].

L'ensemble des points M du plan d'affixe z tels que |z-4|=|z+2i| est donc la droite médiatrice du segment [BC] et cette droite passe par le point A d'affixe 3i.



Proposition 2

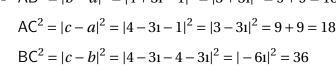
Soit (E) l'équation $(z-1)(z^2-8z+25)=0$ où z appartient à l'ensemble $\mathbb C$ des nombres complexes. Les points du plan dont les affixes sont les solutions dans $\mathbb C$ de l'équation (E) sont les sommets d'un triangle rectangle.

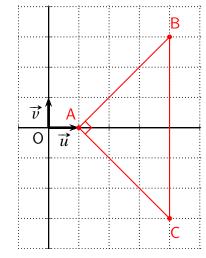
Proposition vraie

- L'équation z-1=0 a pour solution le nombre a=1 affixe d'un point appelé A.
- On résout dans \mathbb{C} l'équation $z^2 8z + 25 = 0$; $\Delta = 64 100 =$ -36 donc cette équation admet deux solutions complexes conjuguées $b = \frac{8+61}{2} = 4+31$ et c = 4-31.

Ces deux nombres complexes b et c sont les affixes de deux points qu'on appelle B et C.

- L'équation (E) a donc trois solutions qui sont les affixes des trois points A, B et C.
- $AB^2 = |b a|^2 = |4 + 3\mathbf{1} 1|^2 = |3 + 3\mathbf{1}|^2 = 9 + 9 = 18$ $AC^2 = |c - a|^2 = |4 - 3i - 1|^2 = |3 - 3i|^2 = 9 + 9 = 18$ $BC^2 = |c - b|^2 = |4 - 31 - 4 - 31|^2 = |-61|^2 = 36$





■ 18+18=36 donc $AB^2+AC^2=BC^2$ donc, d'après la réciproque du théorème de Pythagore, le triangle ABC est rectangle en Α.

Donc les points du plan dont les affixes sont les solutions dans ℂ de l'équation (E) sont les sommets d'un triangle rectangle.

Proposition 3

 $\frac{\pi}{3}$ est un argument du nombre complexe $\left(-\sqrt{3}+\mathrm{i}\right)^8$.

Proposition fausse

Soit z le nombre complexe $-\sqrt{3}+1$; on cherche θ un argument de z.

$$|z| = \sqrt{\left(-\sqrt{3}\right)^2 + 1} = \sqrt{4} = 2$$

On cherche donc θ tel que $\cos\theta = -\frac{\sqrt{3}}{2}$ et $\sin\theta = \frac{1}{2}$; un argument de z est donc $\theta = \frac{5\pi}{6}$.

D'après le cours, un argument de z^8 est $8\theta = \frac{40\pi}{6} \equiv \frac{2\pi}{3} \pmod{2\pi}$.

Les nombres $\frac{\pi}{3}$ et $\frac{2\pi}{3}$ ne sont pas congrus modulo 2π donc la proposition est fausse.