

Fonctions trigonométriques

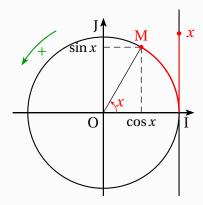
I Définitions et propriétés

Rappel: Intuitivement

Le plan est muni d'un repère orthonormé (O ; \overrightarrow{i} , \overrightarrow{j})

A tout nombre x, on associe un point unique M du cercle trigonométrique de centre O.

Le point M a pour coordonnées $(\cos(x); \sin(x))$



x	0	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$	π
$\cos(x)$						
$\sin(x)$						

Définition : Définitions des fonctions trigonométriques

- La fonction cosinus est la fonction qui, à tout réel x associe $\cos(x)$, $f: x \to \cos x$
- La fonction sinus est la fonction qui, à tout réel x associe $\sin(x)$, $f: x \to \sin x$

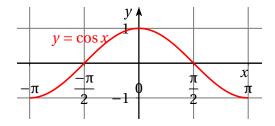
Remarque : Pour tout réel x, $\leq \cos x \leq$ et $\leq \sin x \leq$; $\cos^2 x + \sin^2 x =$

Propriété : parité

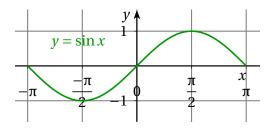
- Pour tout nombre x, $\cos(-x) = \cos(x)$, on dit que la fonction cosinus est
- Pour tout nombre x, $\sin(-x) = -\sin(x)$, on dit que la fonction sinus est

Graphique:

■ Dans un repère orthogonal, le point $M(x, \cos(x))$ et $M'(-x; \cos(-x))$ sont symétriques par rapport à l'axe $(O; \overrightarrow{j})$. La courbe représentative de la fonction cosinus est symétrique par rapport à l'axe $(O; \overrightarrow{j})$.



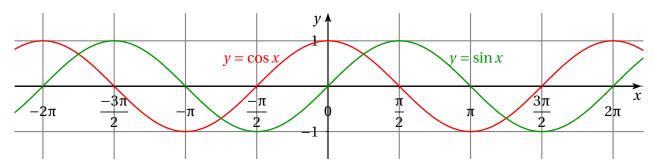
■ Dans un repère orthogonal, le point M(x, cos x) et M'(-x; sin(-x)) sont symétriques par rapport à l'origine
O du repère. La courbe représentative de la fonction sinus est symétrique par rapport à l'origine du repère.



Propriété: périodicité

- Tout réel x, $\cos(x+2\pi) = \cos(x)$; $\sin(x+2\pi) = \sin(x)$ On dit que les fonctions cosinus et sinus sont périodiques, de période
- Les courbes représentatives de cos et sin sont appelées des

 $\frac{\text{Graphique}:}{\text{de compléter par translation de vecteur } 2\pi \overrightarrow{i} \text{ ou } -2\pi \overrightarrow{i}.$



(6)

Etude de la fonction sinus

- La fonction sinus est continue sur $\mathbb R$
- La fonction sinus est dérivable sur \mathbb{R} , et $sin'(x) = \cos(x)$
- Tableau de variation

x	-π	$\frac{-\pi}{2}$	$\frac{\pi}{2}$	π
$\sin'(x) = \dots$				
$\sin(x)$				

Etude de la fonction cosinus

- La fonction cosinus est continue sur $\mathbb R$
- La fonction cosinus est dérivable sur \mathbb{R} , et cos'(x) = -sin(x)
- Tableau de variation

x	-π	0	π
$\cos'(x) = \dots$			
$\cos(x)$			

Démonstration :

les fonctions cosinus et sinus sont dérivables en 0, de dérivées respectives 0 et 1

c'est dire
$$\lim_{h\to 0} \frac{\cos h - 1}{h} = 0$$
 et $\lim_{h\to 0} \frac{\sin h}{h} = 1$

Soit x un réel et $h \neq 0$

On a
$$\frac{\sin(x+h) - \sin x}{h} = \frac{\sin x \cos h + \cos x \sin h - \sin x}{h} = \sin x \frac{\cos h - 1}{h} + \cos x \frac{\sin h}{h}$$

Donc
$$\lim_{h\to 0} \frac{\sin(x+h) - \sin x}{h} = \dots$$

On a
$$\frac{\cos(x+h)-\cos x}{h} = \frac{\cos x \cos h - \sin x \sin h - \cos x}{h} = \cos x \left(\frac{\cos h - 1}{h}\right) - \sin x \left(\frac{\sin h}{h}\right)$$

Ainsi
$$\lim_{h\to 0} \frac{\cos(x+h) - \cos x}{h} = \dots$$

Limites

- $\lim_{x \to 0} \frac{\cos x 1}{x} = \dots$
- $\lim_{x \to 0} \frac{\sin x}{x} = \dots$

Démonstration : Les fonctions cos et \sin sont dérivables sur $\mathbb R$ donc en particulier en 0. Ainsi :

- $\lim_{x \to 0} \frac{\cos x 1}{x} = \lim_{x \to 0} \frac{\cos x \cos 0}{x 0} = \dots$
- $\lim_{x \to 0} \frac{\sin x}{x} = \lim_{x \to 0} \frac{\sin x \sin 0}{x 0} = \dots$

Exemple : Calculer f'(x). L'écrire sous une forme facilitant l'étude de son signe.

- $1. \ f(x) = \sin\left(3x \frac{\pi}{4}\right)$
- $2. \ f(x) = \cos^2 x$

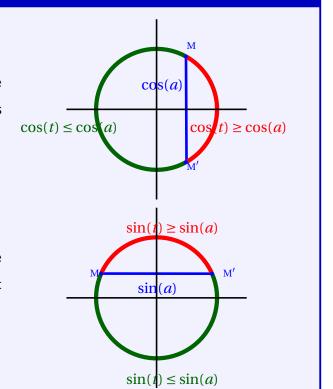
 $3. \quad f(x) = \sin x \left(1 + \cos x\right)$

II Inéquations trigonométriques

Résolution d'Inéquations

Deux points d'un cercle trigonométrique d'abscisse

• $\cos(a)$ $(a \neq k\pi)$ définissent deux arcs représentant les solutions de $\cos(t) \ge \cos(a)$ et $\cos(t) \le \cos(a)$

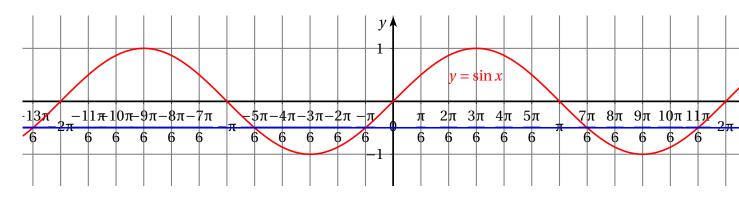


Deux points d'un cercle trigonométrique d'ordonnée $\sin(a)$ $(a \neq \frac{\pi}{2} + k\pi)$ définissent deux arcs représentant les solutions de

 $sin(t) \ge \sin(a)$ et $sin(t) \le \sin(a)$

Exemple : On veut résoudre : $\sin x < -0.5$ dans [0 ; 2π [

■ **Méthode 1** : Résolution graphique à l'aide de la courbe représentative de la fonction sinus



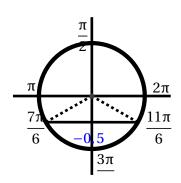
Sur la courbe, on colorie les points dont l'ordonnée est strictement inférieure à -0,5.

Les abscisses sont les solutions de l'inéquation :

• Méthode 2 : Résolution graphique à l'aide du cercle trigonométrique

Sur le cercle trigonométrique, on colorie les points associé à un réel dont le sinus est strictement inférieur à -0,5, ceux dont l'ordonnée est strictement inférieure à -0,5.

Les solutions sont



(<u>\$</u>)

III Exercice d'application

Soit la fonction f définie sur $\mathbb R$ par $f(x) = \frac{3\sin x}{2 + \cos x}$.

- 1. Calculer f'(x). Étudier son signe sur $[0\;;\;\pi]$. En déduire les variations de f sur $[0\;;\;\pi]$.
- 2. Calculer f(-x). En déduire les variations de f sur $[-\pi ; \pi]$.
- 3. Montrer que f est 2π -périodique.

4. Tracer la courbe représentative $\mathscr C$ de f sur $[0\;;\;\pi]$ puis sur $[-4\pi\;;\;4\pi$	4.	Tracer la	courbe	représentative	\mathscr{C}	de	$f sur \mid$	[0;	π]	puis sur	$[-4\pi;$	4π].
---	----	-----------	--------	----------------	---------------	----	---------------	-----	---------	----------	-----------	--------	----

 $-4\pi \ \ \frac{-11\pi}{3} \ \ \frac{-10\pi}{3} \ \ -3\pi \ \ \frac{-8\pi}{3} \ \ \frac{-7\pi}{3} \ \ \frac{-8\pi}{3} \ \ -2\pi \ \ \frac{-5\pi}{3} \ \ -\pi \ \ \frac{-2\pi}{3} \ \ \frac{\pi}{3} \ \ \frac{2\pi}{3} \ \ \pi \ \ \frac{4\pi}{3} \ \ \frac{5\pi}{3} \ \ 2\pi \ \ \frac{7\pi}{3} \ \ \frac{8\pi}{3} \ \ 3\pi \ \ \frac{10\pi}{3} \ \ \frac{11\pi}{3} \ \ 4\pi$