

Fonctions trigonométriques

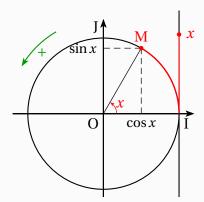
I Définitions et propriétés

Rappel: Intuitivement

Le plan est muni d'un repère orthonormé (O ; \overrightarrow{i} , \overrightarrow{j})

A tout nombre x, on associe un point unique M du cercle trigonométrique de centre O.

Le point M a pour coordonnées $(\cos(x); \sin(x))$



x	0	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$	π
$\cos(x)$	1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{1}{2}$	0	-1
sin(x)	0	$\frac{1}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	1	0

Définition : Définitions des fonctions trigonométriques

- La fonction cosinus est la fonction qui, à tout réel x associe $\cos(x)$, $f: x \to \cos x$
- La fonction sinus est la fonction qui, à tout réel x associe $\sin(x)$, $f: x \to \sin x$

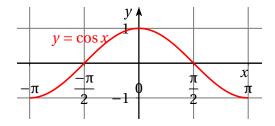
Remarque : Pour tout réel x, $-1 \le \cos x \le 1$ et $-1 \le \sin x \le 1$; $\cos^2 x + \sin^2 x = 1$

Propriété : parité

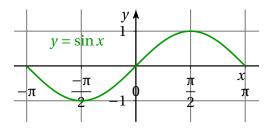
- Pour tout nombre x, $\cos(-x) = \cos(x)$, on dit que la fonction cosinus est paire.
- Pour tout nombre x, $\sin(-x) = -\sin(x)$, on dit que la fonction sinus est impaire.

Graphique:

■ Dans un repère orthogonal, le point $M(x, \cos(x))$ et $M'(-x; \cos(-x))$ sont symétriques par rapport à l'axe $(O; \overrightarrow{j})$. La courbe représentative de la fonction cosinus est symétrique par rapport à l'axe $(O; \overrightarrow{j})$.



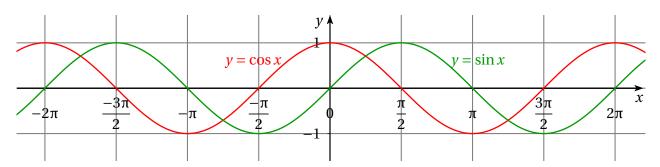
■ Dans un repère orthogonal, le point M(x, cos x) et M'(-x; sin(-x)) sont symétriques par rapport à l'origine
 O du repère. La courbe représentative de la fonction sinus est symétrique par rapport à l'origine du repère.



Propriété: périodicité

- Tout réel x, cos(x + 2π) = cos(x); sin(x + 2π) = sin(x)
 On dit que les fonctions cosinus et sinus sont périodiques, de période 2π
- Les courbes représentatives de cos et sin sont appelées des sinusoïdes.

Graphique : Pour tracer leurs courbes représentatives, il suffit de les tracer sur un intervalle d'amplitude 2π puis de compléter par translation de vecteur $2\pi \overrightarrow{i}$ ou $-2\pi \overrightarrow{i}$.



(<u>\$</u>)

Etude de la fonction sinus

- La fonction sinus est continue sur $\mathbb R$
- La fonction sinus est dérivable sur \mathbb{R} , et sin'(x) = cos(x)
- Tableau de variation

Tableau ac vallation							
x	-π		$\frac{-\pi}{2}$		$\frac{\pi}{2}$		π
$\sin'(x) = \cos(x)$		_	0	+	0	_	
$\sin(x)$	0		-1		, 1		0

Etude de la fonction cosinus

- La fonction cosinus est continue sur $\mathbb R$
- La fonction cosinus est dérivable sur \mathbb{R} , et cos'(x) = -sin(x)
- Tableau de variation

ď	abicau ac variation		
	x	$-\pi$	0 π
	$\cos'(x) = -\sin(x)$	+	0 -
	$\cos(x)$	-1	1

Démonstration :

les fonctions cosinus et sinus sont dérivables en 0, de dérivées respectives 0 et 1

c'est dire
$$\lim_{h\to 0} \frac{\cos h - 1}{h} = 0$$
 et $\lim_{h\to 0} \frac{\sin h}{h} = 1$

Soit x un réel et $h \neq 0$

On a
$$\frac{\sin(x+h)-\sin x}{h} = \frac{\cos x \sin h + \sin x \cos h - \sin x}{h} = \sin x \frac{\cos h - 1}{h} + \cos x \frac{\sin h}{h}$$

Donc
$$\lim_{h \to 0} \frac{\sin(x+h) - \sin x}{h} = \cos x$$

On a
$$\frac{\cos(x+h) - \cos x}{h} = \frac{\cos x \, \cos h - \sin x \, \sin h \, - \, \cos x}{h} = \cos x \left(\frac{\cos h - 1}{h}\right) - \sin x \left(\frac{\sin h}{h}\right)$$

Ainsi
$$\lim_{h \to 0} \frac{\cos(x+h) - \cos x}{h} = -\sin x$$

Limites

Démonstration : Les fonctions \cos et \sin sont dérivables \sup $\mathbb R$ donc en particulier en 0. Ainsi :

$$\lim_{x \to 0} \frac{\cos x - 1}{x} = \lim_{x \to 0} \frac{\cos x - \cos 0}{x - 0} = \cos'(0) = -\sin 0 = 0.$$

$$\lim_{x \to 0} \frac{\sin x}{x} = \lim_{x \to 0} \frac{\sin x - \sin 0}{x - 0} = \sin'(0) = \cos 0 = 1.$$

Exemple : Calculer f'(x). L'écrire sous une forme facilitant l'étude de son signe.

$$1. \ f(x) = \sin\left(3x - \frac{\pi}{4}\right)$$

$$2. \ f(x) = \cos^2 x$$

$$3. \quad f(x) = \sin x \left(1 + \cos x\right)$$

1.
$$f$$
 est de la forme $u(ax+b)$ avec $u(x) = \sin x$, $a = 3$ et $b = \frac{\pi}{4}$.

On a
$$u'(x) = \cos x$$
 d'où $f'(x) = au'(ax + b) = 3\sin(3x - \frac{\pi}{4})$.

2.
$$f$$
 est de la forme u^2 avec $u(x) = \cos(x)$.

On a
$$u'(x) = -\sin x$$
 d'où $f'(x) = 2u'(x)u(x) = 2(-\sin x)\cos x = -2\sin x\cos x = -\sin 2x$.

3.
$$f$$
 est de la forme uv dont la dérivée est $(u'v + uv')$ avec $u(x) = sin(x)$ et $v(x) = 1 + cos(x)$.

$$f'(x) = \cos x (1 + \cos x) + \sin x (-\sin x) = \cos x + \cos^2 x - \sin^2 x.$$

Or,
$$\cos^2 x + \sin^2 x = 1$$
 donc $-\sin^2 x = \cos^2 x - 1$. D'où $f'(x) = 2\cos^2 x + \cos x - 1$.

Posons
$$X = \cos x$$
. Alors, $f'(x) = 2X^2 + X - 1 = (2X - 1)(X + 1)$ après calcul des racines.

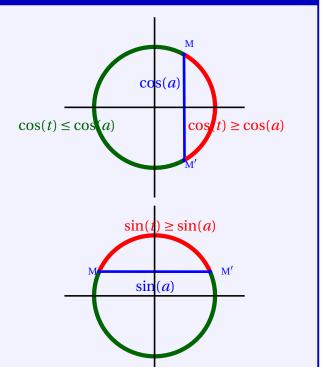
Ainsi,
$$f'(x) = (2\cos x - 1)(\cos x + 1)$$
.

Il Inéquations trigonométriques

Résolution d'Inéquations

Deux points d'un cercle trigonométrique d'abscisse

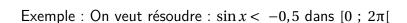
• $\cos(a)$ $(a \neq k\pi)$ définissent deux arcs représentant les solutions de $\cos(t) \ge \cos(a)$ et $\cos(t) \le \cos(a)$



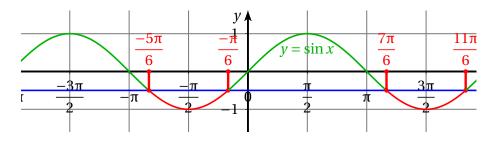
 $\sin(t) \le \sin(a)$

Deux points d'un cercle trigonométrique d'ordonnée $\sin(a)$ $(a \neq \frac{\pi}{2} + k\pi)$ définissent deux arcs représentant les solutions de

 $sin(t) \ge \sin(a)$ et $sin(t) \le \sin(a)$



• Méthode 1 : Résolution graphique à l'aide de la courbe représentative de la fonction sinus



Sur la courbe, on colorie les points dont l'ordonnée est strictement inférieure à -0,5.

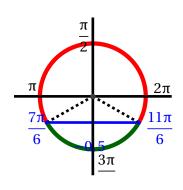
Les abscisses sont les solutions de l'inéquation.

Dans
$$[0 ; 2\pi[, S =] \frac{7\pi}{6} ; \frac{11\pi}{6}[$$

• Méthode 2 : Résolution graphique à l'aide du cercle trigonométrique

Sur le cercle trigonométrique, on colorie les points associé à un réel dont le sinus est strictement inférieur à -0,5, ceux dont l'ordonnée est strictement inférieure à -0,5.

Dans
$$[0 \; ; \; 2\pi [, \; S =] \frac{7\pi}{6} \; ; \; \frac{11\pi}{6} [$$



Ш **Exercice d'application**

Soit la fonction f définie sur \mathbb{R} par $f(x) = \frac{3\sin x}{2 + \cos x}$

- 1. Calculer f'(x). Étudier son signe sur $[0; \pi]$. En déduire les variations de f sur $[0; \pi]$.
- 2. Calculer f(-x). En déduire les variations de f sur $[-\pi; \pi]$.
- 3. Montrer que f est 2π -périodique.
- 4. Tracer la courbe représentative $\mathscr C$ de f sur $[0; \pi]$ puis sur $[-4\pi; 4\pi]$.
 - 1. f est dérivable sur \mathbb{R} comme quotient de fonctions dérivables sur \mathbb{R} avec $2 + \cos x \neq 0$.

$$f'(x) = \frac{3\cos x(2+\cos x) - 3\sin x(-\sin x)}{(2+\cos x)^2} = \frac{6\cos x + 3}{(2+\cos x)^2} = \frac{6\left(\cos x + \frac{1}{2}\right)}{(2+\cos x)^2}$$

f'(x) est du signe de $\cos x + \frac{1}{2} \, \mathrm{sur} \, [0 \; ; \; \pi]$. Or :

• sur
$$\left[0; \frac{2\pi}{3}\right]$$
, $\cos x > -\frac{1}{2} \Leftrightarrow \cos x + \frac{1}{2} > 0$;

• sur
$$\left[\frac{2\pi}{3}; \pi\right]$$
, $\cos x < -\frac{1}{2} \Leftrightarrow \cos x + \frac{1}{2} > 0$.

Et f'(x) ne s'annule qu'en $\frac{2\pi}{3}$.

D'où le tableau de variation :

x	0		$\frac{2\pi}{3}$		π
f'(x)		+	0	_	
f	0		$\sqrt{3}$		0

2. $f(-x) = \frac{3\sin(-x)}{2 + \cos(-x)} = \frac{-3\sin x}{2 + \cos x} = -\frac{3\sin x}{2 + \cos x} = -f(x)$ donc f est impaire.

On peut donc limiter l'étude de f à $[0; \pi]$. On peut en déduire que la fonction f est décroissante sur $[-\pi; -2\frac{\pi}{3}]$ et sur $[2\frac{\pi}{3}; \pi]$ et croissante sur $[-\frac{2\pi}{3}; \frac{2\pi}{3}]$. 3. $f(x+2\pi) = \frac{3\sin(x+2\pi)}{2+\cos(x+2\pi)} = \frac{3\sin x}{2+\cos x} = f(x)$ donc f est 2π -périodique.

- 4. On trace \mathscr{C} sur $[0; \pi]$ puis sur $[-\pi; 0]$ par symétrie centrale puisque f est impaire.

Enfin, comme f est 2π -périodique, on répète le motif tous les 2π par translation.

