Terminale -	Spé	Math
reminiare	Opc	iviati

Interrogation	_	suiet	Δ
IIILEITOgation	-	Sujet	$\overline{}$

Exercice 1.

Répondre aux questions suivantes avec rigueur :

- **1.** Calculer I' intégrale : $I = \int_1^4 -x + 5 \frac{4}{x} dx$
- **2.** En utilisant l'intégration par parties, calculer l'intégrale : $J = \int_0^2 xe^{2x} dx$

			 	 		 		 								 	 			 		 		 	. . .	 		 	 	 	

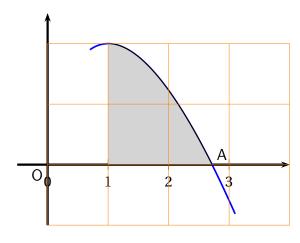
 	 •	 			 								 								 	-	 			 		•	 •			 •	
 		 ٠.			 							 	 							 	 		 			 							

Exercice 2.

Le plan est rapporté à un repère orthogonal.
Soit f la fonction définie sur l'intervalle $]0$; $+\infty[$ par $f(x) = 2x(1 - \ln x)$.
On appelle ${\mathscr C}$ la courbe représentative de la fonction f .
1. a. Calculer les limites de la fonction f en $+\infty$
${f b.}$ Calculer les limites de la fonction f en 0 , on pourra developper l'expression de f .
c. Déterminer $f'(x)$ pour $x \in]0$; $+\infty[$ (où f' est la fonction dérivée de f).

Étudier le signe de $f'(x)$ pour $x \in]0$; $+\infty[$ puis dresser le tableau de variations de la fonction f s l'intervalle $]0$; $+\infty[$.	u

٠.	٠.	 	٠.	 ٠.			٠.	٠.		٠.	٠.	٠.	٠.			٠.	•	•	 	٠.	٠.	٠.	٠.	٠.	٠.		 	 	 	 	 	 	٠.	٠.	٠
• •	• •	 	• •	 • •	• • •	• •	• •	• •	• •	• •	• •	• •	•	• •	• •	• •	•	•	 •	• •	• •	• •	• •	• •	• •	• •	 	 	 	 	 	 	• •	• •	•
٠.		 	٠.	 ٠.			٠.					٠.							 		٠.						 	 	 	 	 	 	٠.	٠.	



cti	on A avec l'axe des abscisses et donner les coordonnées du point A.
. 	
٠.	
a.	Résoudre, par un calcul, l'inéquation $f(x) \ge 0$ dans l'intervalle]0 ; $+\infty$ [. Que peut-on en déduire pour la courbe $\mathscr C$?
a.	Résoudre, par un calcul, l'inéquation $f(x) \ge 0$ dans l'intervalle $]0$; $+\infty[$.
a.	Résoudre, par un calcul, l'inéquation $f(x) \ge 0$ dans l'intervalle $]0$; $+\infty[$.
a.	Résoudre, par un calcul, l'inéquation $f(x) \ge 0$ dans l'intervalle $]0$; $+\infty[$. Que peut-on en déduire pour la courbe $\mathscr C$?
a.	Résoudre, par un calcul, l'inéquation $f(x) \ge 0$ dans l'intervalle $]0$; $+\infty[$.
a.	Résoudre, par un calcul, l'inéquation $f(x) \ge 0$ dans l'intervalle $]0$; $+\infty[$. Que peut-on en déduire pour la courbe $\mathscr C$?
a.	Résoudre, par un calcul, l'inéquation $f(x) \ge 0$ dans l'intervalle $]0$; $+\infty[$. Que peut-on en déduire pour la courbe $\mathscr C$?
a.	Résoudre, par un calcul, l'inéquation $f(x) \ge 0$ dans l'intervalle $]0$; $+\infty[$. Que peut-on en déduire pour la courbe $\mathscr C$?
a.	Résoudre, par un calcul, l'inéquation $f(x) \ge 0$ dans l'intervalle $]0$; $+\infty[$. Que peut-on en déduire pour la courbe $\mathscr C$?
a.	Résoudre, par un calcul, l'inéquation $f(x) \geqslant 0$ dans l'intervalle $]0$; $+\infty[$. Que peut-on en déduire pour la courbe $\mathscr C$?
a.	Résoudre, par un calcul, l'inéquation $f(x) \geqslant 0$ dans l'intervalle $]0$; $+\infty[$. Que peut-on en déduire pour la courbe $\mathscr C$?
a.	Résoudre, par un calcul, l'inéquation $f(x) \geqslant 0$ dans l'intervalle $]0$; $+\infty[$. Que peut-on en déduire pour la courbe $\mathscr C$?
a.	Résoudre, par un calcul, l'inéquation $f(x) \geqslant 0$ dans l'intervalle $]0$; $+\infty[$. Que peut-on en déduire pour la courbe $\mathscr C$?

b. Montrer que la fonction F définie sur]0 ; $+\infty$ [par $F(x) = x^2 \left(\frac{3}{2} - \ln x\right)$ est une primitive de f sur]0 ; $+\infty$ [.

c. On désigne par \mathscr{D} le domaine délimité par la courbe \mathscr{C} , l'axe des abscisses et les droites d'équations x=1 et x=e.

Calculer en unités d'aire, la valeur exacte de l'aire de ${\mathscr D}$ puis, en donner une valeur approchée à 10^{-2} près.