

Exercice 1. (3 points)

Répondre aux questions suivantes avec rigueur :

- **1.** Calculer l' intégrale : $I = \int_1^4 -x + 5 \frac{4}{x} dx$
- **2.** En utilisant l'intégration par parties, calculer l'intégrale : $J = \int_0^2 xe^{2x} dx$

Correction:

Répondre aux questions suivantes avec rigueur :

- 1. Calculer I' intégrale : $I = \int_{1}^{4} -x + 5 \frac{4}{x} dx$ $I = \int_{1}^{4} -x + 5 \frac{4}{x} dx$ $= \left[-\frac{1}{2}x^{2} + 5x 4\ln(x) \right]_{1}^{4}$ $= -\frac{1}{2}4^{2} + 5 \times 4 4\ln(4) \left(-\frac{1}{2}1^{2} + 5 \times 1 4\ln(1) \right)$ $= -8 + 20 4\ln(2^{2}) + \frac{1}{2} 5$ $= \frac{15}{2} 8\ln(2)$ Donc $I = \int_{1}^{4} -x + 5 \frac{4}{x} dx = \frac{15}{2} 8\ln(2)$
- 2. En utilisant l'intégration par parties, calculer l'intégrale : $J = \int_0^2 x e^{2x} dx$ Les fonctions polynomiale et exponentielle sont infiniment dérivables, on peut utiliser une intégration par parties.

On pose :
$$u(x) = x$$
 $u'(x) = 1$
et $v'(x) = e^{2x}$ $v(x) = \frac{1}{2}e^{2x}$
Alors $J = \int_0^2 x e^{2x} dx$
 $= \left[\frac{1}{2} x e^{2x} \right]_0^2 - \int_0^2 \frac{1}{2} e^{2x} dx$
 $= \left[\frac{1}{2} x e^{2x} \right]_0^2 - \left[\frac{1}{2} \times \frac{1}{2} e^{2x} \right]_0^2$
 $= e^4 - 0 - \frac{1}{4} e^4 + \frac{1}{4} e^0$
 $= \frac{3}{4} e^4 + \frac{1}{4}$

Donc
$$\int \int \int_0^2 x e^{2x} \, dx = \frac{3}{4} e^4 + \frac{1}{4}$$

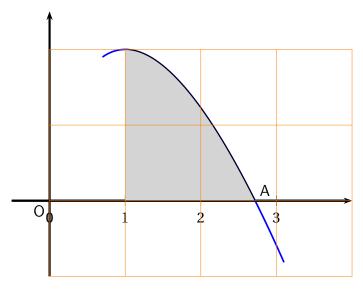
Exercice 2. (7 points)

Le plan est rapporté à un repère orthogonal.

Soit f la fonction définie sur l'intervalle]0; $+\infty[$ par $f(x) = 2x(1 - \ln x)$.

On appelle $\mathscr C$ la courbe représentative de la fonction f.

- **1.** a. Calculer les limites de la fonction f en $+\infty$
 - **b.** Calculer les limites de la fonction f en 0, on pourra developper l'expression de f .
 - **c.** Déterminer f'(x) pour $x \in]0$; $+\infty[$ (où f' est la fonction dérivée de f).
 - **d.** Étudier le signe de f'(x) pour $x \in]0$; $+\infty[$ puis dresser le tableau de variations de la fonction f sur l'intervalle]0; $+\infty[$.
- 2. Résoudre sur]0; $+\infty[$ l'équation f(x) = 0. En déduire que la courbe $\mathscr C$ admet un unique point d'intersection A avec l'axe des abscisses et donner les coordonnées du point A.
- **3.** a. Résoudre, par un calcul, l'inéquation $f(x) \ge 0$ dans l'intervalle]0; $+\infty[$. Que peut-on en déduire pour la courbe $\mathscr C$?
 - **b.** Montrer que la fonction F définie sur]0; $+\infty[$ par $F(x)=x^2\left(\frac{3}{2}-\ln x\right)$ est une primitive de f sur]0; $+\infty[$.
 - **c.** On désigne par \mathscr{D} le domaine délimité par la courbe \mathscr{C} , l'axe des abscisses et les droites d'équations x=1 et x=e.



Calculer en unités d'aire, la valeur exacte de l'aire de ${\mathcal D}$ puis, en donner une valeur approchée à 10^{-2} près.

Correction:

Sujet : Baccalauréat ES Polynésie juin 2009

- **1. a.** En $+\infty$: on a $\lim_{x \to +\infty} -\ln x = -\infty$ ainsi que $\lim_{x \to +\infty} 1 \ln x = -\infty$ et $\lim_{x \to +\infty} 2x = +\infty$ d'où finalement par produit de limites $\lim_{x \to +\infty} 2x(1 \ln x) = -\infty$
 - **b.** En 0 : On a $f(x) = 2x 2 \times x \ln x$

Comme
$$\lim_{x\to 0} x = 0$$

$$\mathsf{Et} \, \lim_{x \to 0} x \ln x = 0$$

Alors par somme
$$\lim_{x\to 0} f(x) = 0$$

c. On sait f, définie par $f(x) = 2x(1 - \ln x)$, est dérivable sur $x \in]0$; $+\infty[$

On a
$$f(x) = u(x) \times v(x)$$
, avec $u(x) = 2x$ et $v(x) = 1 - \ln x$.

D'où
$$f'(x) = u'(x) \times v(x) + u(x) \times v'(x) = 2(1 - \ln x) + 2x \times \left(-\frac{1}{x}\right) = 2 - 2\ln x - 2 = -2\ln x.$$

Donc
$$f'(x) = -2\ln x$$

d. On sait que si 0 < x < 1, $\ln x < 0$, donc f'(x) > 0;

Si
$$1 < x$$
, $\ln x >$, donc $f'(x) < 0$.

D'où le tableau de variations :

x	() 1 +∞
f'(x)		+ 0 -
Variation de f		

2. $f(x) = 0 \iff 2x(1 - \ln x) = 0 \iff 1 - \ln x = 0$, car sur]0; $+\infty[$, 2x > 0.

Donc
$$f(x) = 0 \iff 1 = \ln x \iff \ln e = \ln x \iff e = x$$
.

La courbe $\mathscr C$ admet un unique point d'intersection A avec l'axe des abscisses et A(e ; 0)

3. a. Sur]0; $+\infty[$, $f(x) \ge 0 \iff 2x(1-\ln x) > 0$.

Un produit de facteurs est positif si les deux facteurs sont de même signe ;

or sur]0; $+\infty[$, 2x > 0: les deux facteurs ne peuvent être tous les deux négatifs.

Donc
$$f(x) \ge 0 \iff \begin{cases} 2x > 0 \\ \text{et} \iff 1 > \ln x \iff \ln e > \ln x \iff x < e. \end{cases}$$

Conclusion $|f(x) > 0 \iff 0 < x < e|$

Géométriquement ceci signifie que la courbe $\mathscr C$ est au dessus de l'axe des abscisses entre O et A

b. Sur]0; $+\infty$ [, la fonction F , définie par $F(x) = x^2 \left(\frac{3}{2} - \ln x\right)$, est dérivable et :

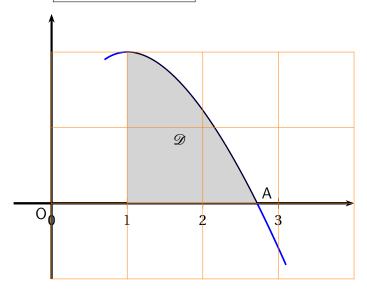
$$F'(x) = 2x\left(\frac{3}{2} - \ln x\right) + x^2\left(-\frac{1}{x}\right) = 3x - 2x\ln x - x = 2x - 2x\|nx = 2x(1 - \ln x).$$

Donc F est bien une primitive de f sur]0; $+\infty$ [

c. On a vu à la question précédente que pour x < e, f(x) > 0, donc l'aire de la surface \mathscr{D} est égale (en unité d'aire) à l'intégrale :

$$\int_{1}^{e} f(x) dx = [F(x)]_{1}^{e} = F(e) - F(1) = e^{2} \left(\frac{3}{2} - \ln e\right) - 1 \left(\frac{3}{2} - \ln 1\right) = \frac{e^{2}}{2} - \frac{3}{2} = \frac{e^{2} - 3}{2}.$$

Donc
$$\int_{1}^{e} f(x) dx = \frac{e^2 - 3}{2}.$$



On a $\mathscr{A}(\mathscr{D}) \approx 2,19$ u. a. (ce que confirme approximativement la figure).