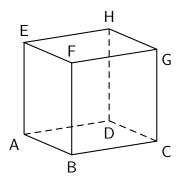


Exercice 1.

On considère un cube ABCDEFGH.

- 1. a. Simplifier le vecteur $\overrightarrow{AC} + \overrightarrow{AE}$.
 - **b.** En déduire que $\overrightarrow{AG} \cdot \overrightarrow{BD} = 0$.
 - **c.** On admet que $\overrightarrow{AG} \cdot \overrightarrow{BE} = 0$.

Démontrer que la droite (AG) est orthogonale au plan (BDE).



- 2. L'espace est muni du repère orthonormé $(A; \overrightarrow{AB}, \overrightarrow{AD}, \overrightarrow{AE})$.
 - **a.** Démontrer qu'une équation cartésienne du plan (BDE) est x + y + z 1 = 0.
 - b. Déterminer les coordonnées du point d'intersection K de la droite (AG) et du plan (BDE).
 - **c.** On admet que l'aire, en unité d'aire, du triangle BDE est égale à $\frac{\sqrt{3}}{2}$. Calculer le volume de la pyramide BDEG.

Correction:

Sujet tiré de Baccalauréat S - Amérique du Sud - 21 novembre 2017

1. a.
$$\overrightarrow{AC} + \overrightarrow{AE} = \overrightarrow{AC} + \overrightarrow{CG} = \overrightarrow{AG}$$

b.
$$\overrightarrow{AG} \cdot \overrightarrow{BD} = (\overrightarrow{AC} + \overrightarrow{AE}) \cdot \overrightarrow{BD} = \overrightarrow{AC} \cdot \overrightarrow{BD} + \overrightarrow{AE} \cdot \overrightarrow{BD}$$

[AC] et [BD] sont les deux diagonales du carré ABCD donc les deux droites (AC) et
 (BD) sont perpendiculaires;

on en déduit que $\overrightarrow{AC} \cdot \overrightarrow{BD} = 0$.

■ La droite (AE) est perpendiculaire au plan (ABD) donc les vecteurs \overrightarrow{AE} et \overrightarrow{BD} sont orthogonaux;

on en déduit que $\overrightarrow{AE} \cdot \overrightarrow{BD} = 0$;

Donc
$$\overrightarrow{AG} \cdot \overrightarrow{BD} = \overrightarrow{AC} \cdot \overrightarrow{BD} + \overrightarrow{AE} \cdot \overrightarrow{BD} = 0$$
.

On en déduit que $\overrightarrow{AG} \perp \overrightarrow{BD}$.

c. On admet que $\overrightarrow{AG} \cdot \overrightarrow{BE} = 0$ donc $\overrightarrow{AG} \perp \overrightarrow{BE}$.

Les vecteurs \overrightarrow{BD} et \overrightarrow{BE} sont deux vecteurs directeurs du plan (BDE);

le vecteur \overrightarrow{AG} est orthogonal à deux vecteurs directeurs du plan (BDE)

donc le vecteur \overrightarrow{AG} est orthogonal au plan (BDE).

On en déduit que la droite (AG) est orthogonale au plan (BDE).

- 3. L'espace est muni du repère orthonormé $(A; \overrightarrow{AB}, \overrightarrow{AD}, \overrightarrow{AE})$.
 - **a.** $\overrightarrow{AG} = \overrightarrow{AC} + \overrightarrow{AE} = \overrightarrow{AB} + \overrightarrow{AD} + \overrightarrow{AE}$ donc le vecteur \overrightarrow{AG} a pour coordonnées (1 ; 1 ; 1).

D'après la question 1. c., la droite (AG) est orthogonale au plan (BDE)

donc le vecteur \overrightarrow{AG} est un vecteur normal au plan (BDE).

Le plan (BDE) est l'ensemble des points M (x; y; z) tels que $\overrightarrow{AG} \perp \overrightarrow{BM}$.

Le point B a pour coordonnées (1; 0; 0)

donc le vecteur \overrightarrow{BM} a pour coordonnées (x-1; y; z).

$$\overrightarrow{\mathsf{AG}} \perp \overrightarrow{\mathsf{BM}} \iff \overrightarrow{\mathsf{AG}} \cdot \overrightarrow{\mathsf{BM}} = 0 \iff (x-1) \times 1 + y \times 1 + z \times 1 = 0 \iff x + y + z - 1 = 0$$

Le plan (BDE) a donc pour équation x + y + z - 1 = 0.

b. • On détermine une représentation paramétrique de la droite (AG).

Cette droite passe par le point A de coordonnées (0; 0; 0) et a pour vecteur directeur le vecteur \overrightarrow{AG} de coordonnées (1; 1; 1).

La droite (AG) a donc pour représentation paramétrique : $\begin{cases} x = t \\ y = t \text{ avec } t \in \mathbb{R} \\ z = t \end{cases}$

Le point K d'intersection de (AG) et (BDE) a ses coordonnées qui sont solutions du

On déduit de ce système que t + t + t - 1 = 0 donc que $t = \frac{1}{3}$.

Le point K a donc pour coordonnées $\left(\frac{1}{3}; \frac{1}{3}; \frac{1}{3}\right)$.

c. On admet que l'aire, en unité d'aire, du triangle BDE est égale à $\mathscr{A} = \frac{\sqrt{3}}{2}$.

Le volume de la pyramide BDEG est donné par la formule $\mathcal{V} = \frac{1}{3} \times h \times \mathscr{A}$ où h est la hauteur de la pyramide issue de G. d'après les questions précédentes, cette hauteur h est la longueur GK.

$$\mathsf{GK} = \sqrt{\left(\frac{1}{3} - 1\right)^2 + \left(\frac{1}{3} - 1\right)^2 + \left(\frac{1}{3} - 1\right)^2} = \sqrt{\frac{4}{9} + \frac{4}{9} + \frac{4}{9}} = \sqrt{\frac{12}{9}} = \frac{2\sqrt{3}}{3}.$$

Donc
$$V = \frac{1}{3} \times \frac{2\sqrt{3}}{3} \times \frac{\sqrt{3}}{2} = \frac{1}{3}$$
.

Exercice 2.

Dans l'espace rapporté à un repère orthonormé $(O; \vec{i}, \vec{j}, \vec{k})$ on donne les points :

$$A(1; 2; 3), B(3; 0; 1), C(-1; 0; 1), D(2; 1; -1), E(-1; -2; 3)$$
 et $F(-2; -3; 4)$.

Pour chaque affirmation, dire si elle est vraie ou fausse en justifiant votre réponse. Une réponse non justifiée ne sera pas prise en compte.

Affirmation 1 : Les trois points A, B, et C sont alignés.

Affirmation 2: Le vecteur $\overrightarrow{n}(0; 1; -1)$ est un vecteur normal au plan (ABC).

Affirmation 3 : La droite (EF) et le plan (ABC) sont sécants et leur point d'intersection est le milieu du segment [BC].

Affirmation 4 : Les droites (AB) et (CD) sont sécantes.

Correction:

Sujet tiré de baccalauréat S - Métropole-La Réunion - 20 juin 2016

Affirmation 1

Affirmation 1

Les vecteurs \overrightarrow{AB} et \overrightarrow{AC} ont pour coordonnées respectives $\begin{pmatrix} 2 \\ -2 \end{pmatrix}$ et $\overrightarrow{AC} \begin{pmatrix} -2 \\ -2 \end{pmatrix}$.

Puisque $\frac{-2}{2} \neq \frac{-2}{-2}$, les vecteurs \overrightarrow{AB} et \overrightarrow{AC} n'ont pas leurs coordonnées proportionnelles.

Les points A,B et C ne sont donc pas alignés : l'affirmation 1 est fausse.

Affirmation 2

Calculons $\overrightarrow{n} \cdot \overrightarrow{AB}$ et $\overrightarrow{n} \cdot \overrightarrow{AC}$:

$$\overrightarrow{n} \cdot \overrightarrow{AB} = 0 \times 2 + 1 \times (-2) + (-1) \times (-2) = 0$$

$$\overrightarrow{n} \cdot \overrightarrow{AC} = 0 \times (-2) + 1 \times (-2) + (-1) \times (-2) = 0$$

Le vecteur \overrightarrow{n} est orthogonal à deux vecteurs non colinéaires du plan (ABC) : on en déduit que le vecteur \overrightarrow{n} est normal au plan (ABC) : l'affirmation 2 est vraie.

Affirmation 3

Première méthode :

• Montrons tout d'abord que la droite (EF) et le plan (ABC) sont sécants :

La droite (EF) et le plan (ABC) sont sécants si et seulement si les vecteurs $\vec{n} \begin{pmatrix} 0 \\ 1 \\ -1 \end{pmatrix}$ et $\overrightarrow{EF} \begin{pmatrix} -1 \\ -1 \\ 1 \end{pmatrix}$ ne sont

pas orthogonaux.

Calculons
$$\vec{n} \cdot \overrightarrow{EF} : \vec{n} \cdot \overrightarrow{EF} = 0 \times (-1) + 1 \times (-1) + (-1) \times 1 = -2$$

Puisque $\vec{n} \cdot \overrightarrow{EF} \neq 0$, alors la droite (EF) et le plan (ABC) sont sécants.

• Puisque le milieu I du segment [BC] appartient manifestement au plan (ABC), il suffit de vérifier si I appartient à la droite (EF) :

Le milieu I du segment [BC] a pour coordonnées $\left(\frac{x_{\rm B}+x_{\rm C}}{2}\; ;\; \frac{y_{\rm B}+y_{\rm C}}{2}\; ;\; \frac{z_{\rm B}+z_{\rm C}}{2}\right)=(1,0,1)$ Les vecteurs

$$\overrightarrow{EF}$$
 et \overrightarrow{EI} ont pour coordonnées respectives $\begin{pmatrix} -1 \\ -1 \\ 1 \end{pmatrix}$ et $\begin{pmatrix} 2 \\ 2 \\ -2 \end{pmatrix}$

Puisque $\overrightarrow{EI} = -2\overrightarrow{EF}$, les points E, I et F sont alignés : I \in (EF)

On a prouvé que la droite (EF) et le plan (ABC) sont sécants en le milieu du segment [BC] : l'affirmation 3 est vraie.

Seconde méthode :

• Déterminons une représentation paramétrique de la droite (EF) :

La droite (EF) passe par E(-1; -2; 3) et est dirigée par $\overrightarrow{EF}\begin{pmatrix} -1 \\ -1 \\ 1 \end{pmatrix}$ alors $\begin{cases} x = -1 - t \\ y = -2 - t & (t \in \mathbb{R}) \\ z = 3 + t \end{cases}$

• Déterminons une équation cartésienne du plan (ABC), noté ${\mathscr P}$: Puisque $\vec negin{pmatrix}0\\1\\-1\end{pmatrix}$ est normal au plan

 \mathscr{P} , ce dernier a une équation de la forme y-z+d=0 où $d\in\mathbb{R}$

Puisque A(1,2,3) est un point de \mathscr{P} , alors $y_A - z_A + d = 0$, soit $d = -y_A + z_A = 1$

Une équation du plan \mathscr{P} est y-z+1=0

• Déterminons (EF) $\cap \mathscr{P}$:

Soit M un point de la droite (EF). IL existe alors un nombre réel
$$t$$
 tel que
$$\begin{cases} x_{\rm M}=-1-t \\ y_{\rm M}=-2-t \\ z_{\rm M}=3+t \end{cases}$$

M appartient à \mathscr{P} si et seulement si $y_{\rm M}-z_{\rm M}+1=0$, i.e : -2-t-(3+t)+1=0 soit t=-2 La droite (EF) et le plan \mathscr{P} sont donc sécants en un point I de coordonnées (-1-(-2),-2-(-2),3+(-2))=(1,0,1)

Reste à vérifier que l est le milieu de [BC] :

Le milieu du segment [BC] a pour coordonnées $\left(\frac{x_{\rm B}+x_{\rm C}}{2},\frac{y_{\rm B}+y_{\rm C}}{2},\frac{z_{\rm B}+z_{\rm C}}{2}\right)=(1,0,1)$ On en déduit que I est le milieu de [BC] l'affirmation 3 est vraie.

Affirmation 4

Première méthode :

• Les vecteurs \overrightarrow{AB} et \overrightarrow{CD} ont pour coordonnées respectives $\begin{pmatrix} 2 \\ -2 \\ -2 \end{pmatrix}$ et $\begin{pmatrix} 3 \\ 1 \\ -2 \end{pmatrix}$.

N'ayant pas leurs coordonnées proportionnelles, les vecteurs \overrightarrow{AB} et \overrightarrow{CD} ne sont pas colinéaires : les droites (AB) et (CD) ne sont pas parallèles

- Les droites (AB) et (CD) sont donc soit sécantes, soit non coplanaires, selon que le point D appartient ou non au plan (ABC) :
 - Une première manière de montrer que D n'appartient pas au plan (ABC) :

D appartient au plan (ABC) si et seulement si les vecteurs $\overrightarrow{AD}\begin{pmatrix} 1 \\ -1 \\ -4 \end{pmatrix}$ et $\overrightarrow{n}\begin{pmatrix} 0 \\ 1 \\ -1 \end{pmatrix}$ sont orthogonaux.

Puisque $\overrightarrow{AB} \cdot \overrightarrow{n} = -1 + 4 = 3 \neq 0$, alors D n'appartient pas au plan (ABC).

• Une seconde manière de montrer que D n'appartient pas au plan (ABC) :

Puisque les vecteurs \overrightarrow{AB} et \overrightarrow{AC} ne sont pas colinéaires, D appartient au plan (ABC) si et seulement

si le vecteur $\overrightarrow{AD}\begin{pmatrix} 1\\ -1\\ -4 \end{pmatrix}$ s'écrit en fonction des vecteurs \overrightarrow{AB} et \overrightarrow{AC} , autrement dit si et seulement si

il existe deux nombres réels α et β tels que $\overrightarrow{AD} = \alpha \overrightarrow{AB} + \beta \overrightarrow{AC}$.

L'égalité ci-dessus est équivalente au système :
$$\begin{cases} 1=2\alpha-2\beta\\\\ -1=-2\alpha-2\beta\\\\ -4=-2\alpha-2\beta \end{cases}$$

Les deux dernières équations étant incompatibles, D n'est pas un point du plan (ABC). Les droites (AB) et (CD) ne sont donc pas coplanaires :l'affirmation 4 est fausse.

Seconde méthode :

• Déterminons des représentations paramétriques des droites (AB) et (CD) :

La droite (AB) passe par A(1; 2; 3) et est dirigée par
$$\overrightarrow{AB}$$
 $\begin{pmatrix} 2 \\ -2 \\ -2 \end{pmatrix}$ alors $\begin{cases} x = 1 + 2t \\ y = 2 - 2t \\ z = 3 - 2t \end{cases}$

La droite (CD) passe par C(-1; 0; 1) et est dirigée par
$$\overrightarrow{CD}$$
 $\begin{pmatrix} 3 \\ 1 \\ -2 \end{pmatrix}$ alors $\begin{cases} x = -1 + 3t \\ y = t \quad (t \in \mathbb{R}) \end{cases}$

• Déterminons (AB)
$$\cap$$
 (CD) : Résolvons pour cela le système
$$\begin{cases} 1+2t &= -1+3t' \\ 2-2t &= t' \end{cases}$$
 (1) :
$$3-2t &= t'$$

$$(1) \iff \begin{cases} 2t - 3t' = -2 \\ 2t + t' = 2 \\ 2t + t' = 3 \end{cases}$$

Le système n'ayant pas de solution, on en déduit que les droites ne sont pas sécantes : l'affirmation 4 est fausse.