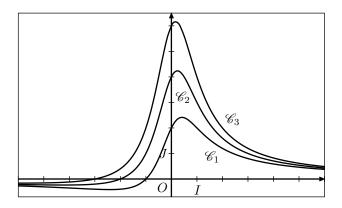


Exercices supplémentaires - Convexité

Exercice 1.

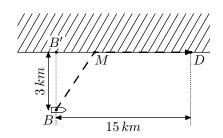
On considère pour tout entier naturel n non-nul, la fonction f_n définie sur $\mathbb R$ par la relation : $f_n(x) = \frac{2(x+n)}{1+x^2}$ Dans un repère (O; I; J) orthonormé, on note $\mathscr C_n$ la courbe représentative de la fonction f_n .



- 1. Déterminer l'expression de la fonction dérivée f'_n .
- 2. Déterminer l'équation réduite de la tangente (d_n) à la courbe \mathscr{C}_n au point d'abscisse 1.
- 3. (a) Etablir l'égalité suivante : $nx^3 (2n+1)x^2 + (n+2)x 1 = (x-1)^2(nx-1)$
 - (b) Etudier la position relative de la droite (d_n) et de la courbe \mathscr{C}_n pour tout entier naturel n supérieur ou égal à 2.

Exercice 2.

Un bateau, représenté par le point B, se trouve à trois kilomètres du rivage; le point B' représente le point du rivage le plus proche du bateau (son projeté orthogonal); le point D représente la destination à atteindre par le marin. Pour se faire, le marin décide d'atteindre un point M de la berge, puis de rejoindre le point D en voiture.



Le bateau navigue à une vitesse de $15\ kmh^{-1}$ et la voiture se déplacer à unevitesse de $40\ kmh^{-1}$. On note x la distance B'M :

- 1. Exprimer la distance BM et MD en fonction de x.
- 2. On note h(x) le temps de parcours effectué lorsque B'M = x.
 - (a) Justifier que : $h(x) = \frac{1}{120} \left(8\sqrt{x^2 + 9} + 45 3x \right)$
 - (b) Déterminer l'expression de la fonction dérivée h'.
 - (c) Dresser le tableau de variations de la fonction h.
- 3. En déduire la valeur de x pour laquelle le temps de trajet du marin est minimale.

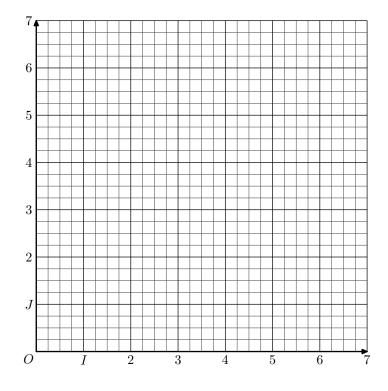
Exercice 3.

On note f la fonction définie sur l'intervalle $]0; +\infty[$ par $: f(x) = \frac{1}{x^2} \cdot e^{\frac{1}{x}}$

On note \mathscr{C} la courbe représentative de la fonction f dans un repère orthonormé $(0; \vec{i}; \vec{j})$. L'unité graphique est $1\,cm$.

1. Etude des limites

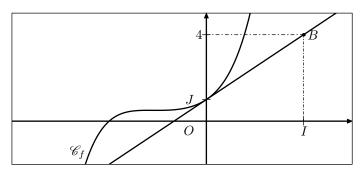
- (a) Déterminer la limite de la fonction f quand x tend vers 0.
- (b) Déterminer la limite de la fonction f quand x tend vers $+\infty$.
- (c) Quelles conséquences peut-on déduire de ces deux résultats, pour la courbe \mathscr{C} ?
- 2. Etude des variations de la fonction f.
 - (a) Démontrer que, la fonction dérivée de la fonction f s'exprime, pour tout réel x strictement positif, par : $f'(x) = -\frac{1}{x^4}e^{\frac{1}{x}}(2x+1)$
 - (b) Déterminer le signe de f' et en déduire le tableau de variations de f sur l'intervalle $]0; +\infty[$.
 - (c) Démontrer que l'équation f(x) = 2 a une unique solution notée α appartenant à l'intervalle $]0; +\infty[$ et donner la valeur approchée de α arrondie au centième.
- 3. Tracer la courbe $\mathscr C$ dans le repère orthonormé $\left(\mathbf{O};\vec{i};\vec{j}\right)$.



Exercice 4.

On considère la fonction f définie par la relation : $f(x) = (ax + 1)(2x^2 + x + 1)^2$

Dans un repère (O,I,J) orthogonal donné ci-dessous, on représente la courbe \mathscr{C}_f représentative de la fonction f.



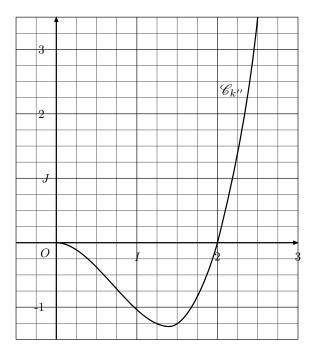
La droite (d) passe par les points J et $B\begin{pmatrix} 1\\4 \end{pmatrix}$.

- 1. (a) Justifier que la courbe \mathscr{C}_f passe par le point J.
 - (b) Déterminer le coefficient de la droite (JB).
 - (c) Démontrer que tout réel x, on a : $f'(x) = \left[10ax^2 + (3a+8)x + (a+2)\right]\left(2x^2 + x + 1\right)$
 - (d) On suppose que la droite (JB) est tangente à la courbe \mathscr{C}_f au point J. Déterminer la valeur de a. Justifier votre réponse.
- 2. On admet que f' a pour expression : $f'(x) = (10x^2 + 11x + 3)(2x^2 + x + 1)$

Déterminer les sens de variation de la fonction f sur \mathbb{R} .

Exercice 5.

On a tracé ci-dessous la représentation graphique de la dérivée seconde k'' d'une fonction k définie sur $[0; +\infty[$.



Parmi les réponses proposées, laquelle est correcte?

- 1. k est concave sur l'intervalle [1;2].
- 2. k est convexe sur l'intervalle [0,2].
- 3. k est convexe sur $[0; +\infty[$.
- 4. k est concave sur $[0; +\infty[$.

Exercice 6.

Soit f la fonction définie sur \mathbb{R} par : $f(x) = xe^{x^2-1}$

 \mathscr{C}_f est la courbe représentative de la fonction f dans un repère orthonormé du plan. On note f' la fonction dérivée de f et f'' la fonction dérivée seconde de f.

- 1. (a) Montrer que pour tout réel $x: f'(x) = (2x^2 + 1)e^{x^2-1}$
 - (b) En déduire le sens de variation de f sur \mathbb{R} .
- 2. On admet que pour tout réel $x: f''(x) = 2x(2x^2+3)e^{x^2-1}$ Déterminer, en justifiant, l'intervalle sur lequel la fonction f est convexe.

Exercice 7.

On considère la fonction f définie sur l'intervalle]0;10] par $:f(x)=-x\ln(x)+2x+1$

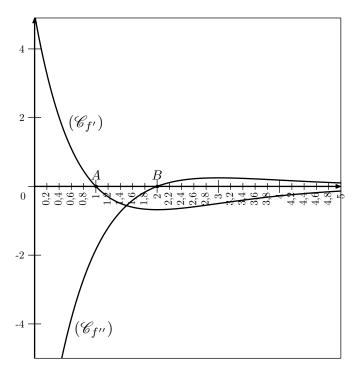
On note \mathscr{C}_f la courbe représentative de la fonction f dans le plan muni d'un repère.

Montrer que la courbe \mathscr{C} est entièrement située en dessous de chacune de ses tangentes sur l'intervalle]0;10].

Exercice 8.

On considère une fonction f définie sur l'intervalle [0; 5].

On a représenté ci-dessous la courbe $(\mathscr{C}_{f'})$ de la fonction dérivée f' ainsi que la courbe $(\mathscr{C}_{f''})$ de la fonction dérivée seconde f'' sur l'intervalle [0;5].



Le point A de coordonnées $\begin{pmatrix} 1 \\ 0 \end{pmatrix}$ appartient à $(\mathscr{C}_{f'})$ et le point B de coordonnées $\begin{pmatrix} 2 \\ 0 \end{pmatrix}$ appartient à la courbe $(\mathscr{C}_{f''})$.

- 1. Déterminer le sens de variation de la fonction f. Justifier.
- 2. Déterminer sur quel(s) intervalle(s), la fonction f est convexe. Justifier.
- 3. La courbe de f admet-elle des points d'inflexion? Justifier. Si oui, préciser leur(s) abscisse(s).

Exercice 9.

La production mensuelle de légumes permettra de livrer au maximum 1000 paniers par mois. Le coût total de production est modélisé par la fonction C définie sur l'intervalle [0;10] par :

$$C(x) = -\frac{1}{48}x^4 + \frac{5}{16}x^3 + 5x + 10$$

Lorsque x est exprimé en centaines de papiers, C(x) est égal au coût total exprimé en centaines d'euros.

On admet que, pour tout nombre x de l'intervalle [0;10], le coût marginal est donné par la fonction $C_m = C'$ où C' est la fonction dérivée de C.

- 1. Calculer $C_m(6)$, le coût marginal pour six cents paniers vendus.
- 2. On note C'' la fonction dérivée seconde de C et on a : C''(x) = $-\frac{1}{4}x^2 + \frac{15}{8}x$
 - (a) Déterminer le plus grand intervalle de la forme [0; a] inclus dans [0; 10] sur lequel la fonction C est convexe.
 - (b) Que peut-on dire du point d'abscisse a de la courbe de la fonction C?

 Interpréter cette valeur de a en termes de coût.

Exercice 10.

On considère la fonction f définie sur l'intervalle]0;15] par : $f(x) = 9x^2(1-2\ln x)+10$.

La courbe représentative de f est donnée ci-dessous :



On admet que $f''(x) = -36 \ln x - 36$ où f'' désigne la dérivée seconde de la fonction f sur l'intervalle]0;1,5]. Montrer que la courbe représentative de la fonction f admet un point d'inflexion dont l'abscisse est e^{-1} .

Exercice 11.

On considère la fonction f définie sur l'intervalle [0;10] par : $f(x) = \frac{1}{0,5+100e^{-x}}$ On note f' la fonction dérivée de f sur l'intervalle [0;10].

1. Montrer que, pour tout réel x dans l'intervalle [0;10], on a : $f'(x) = \frac{100e^{-x}}{(0,5+100e^{-x})^2}$

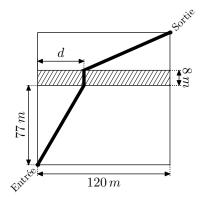
On note f'' la fonction dérivée seconde de f sur l'intervalle [0; 10].

Un logiciel de calcul formel fournit l'expression suivante de f''(x): $f''(x) = \frac{100e^{-x}(100e^{-x} - 0.5)}{(0.5 + 100e^{-x})^3}$

- 2. (a) Montrer que, dans l'intervalle [0; 10], l'inéquation $100e^{-x} 0.5 \ge 0$ est équivalente à l'inéquation : $x \le -\ln(0.005)$.
 - (b) En déduire le tableau de signes de la fonction f'' sur l'intervalle [0; 10].
- 3. On appelle \mathscr{C}_f la courbe représentative de f tracée dans un repère. Montrer, à l'aide de la question 2, que la courbe \mathscr{C}_f admet un point d'inflexion noté I, dont on précisera la valeur exacte de l'abscisse.
- 4. En utilisant les résultats de la question 2, déterminer l'intervalle sur lequel la fonction f est concave.

Exercice 12.

Une ville souhaite emmenager un terrain de forme carré traversé par une rivière traversant latéralement le terrain. La figure ci-dessous représente le terrain et la rivière est la partie hachurée :



A quelle distance d doit-on placer le pont pour que la distance parcourue par un visiteur soit minimale?