

Dérivation et convexité

Compléments de dérivation

1.1 Fonctions composées

Définition 1 : Composée de deux fonctions

Soit u une fonction définie sur un intervalle I et v une fonction définie sur un intervalle J tel que pour tout x de I, on ait $u(x) \in J$.

La fonction composée de u suivie de v, notée $v \circ u$, est la fonction définie par : $(v \circ u)(x) = v(u(x))$.

$$x \mapsto u(x) \mapsto v(u(x))$$

$$x \longmapsto v \circ u(x)$$

Exemples:

• On considère la fonction f définie par $f(x) = \frac{1}{x^2}$. Identifier la composée de deux fonctions dans la fonction f.

La fonction f est composée de u suivie de v avec $u(x) = \dots$ et $v(x) = \dots$

$$x \mapsto \dots \mapsto \dots$$

• On considère les fonctions u et v définies par : $u(x) = \frac{1}{x}$ et $v(x) = \sqrt{x} + 1$. Exprimer les fonctions $v \circ u$ et $u \circ v$ en fonction de x.

Remarque : en général $v \circ u \neq u \circ v$ aussi bien sur l'ensemble de définition que sur son expression.

1.2 Dérivée de la composée de deux fonctions

Propriété

Soit u une fonction définie et dérivable sur un intervalle I tel que, pour tout x de I, $u(x) \in J$ et v une fonction définie et dérivable sur J.

Alors $f = v \circ u$ est dérivable sur l'et pour tout $x \in I$, $f'(x) = (v \circ u)'(x) = u'(x) \times v'[u(x)]$,

Autrement dit, $f' = u' \times (v' \circ u)$.

Exemples:

■ Déterminer la dérivée de la fonction f définie sur $\left|\frac{3}{2};+\infty\right|$ par $f(x)=\sqrt{4x^2-9}$.

La fonction f définie sur $\left]\frac{3}{2};+\infty\right[$ par $f(x)=\sqrt{4x^2-9}$ est dérivable sur $\left]\frac{3}{2};+\infty\right[$ comme composée de fonctions dérivable sur $\left]\frac{3}{2};+\infty\right[$

On a $f(x) = v \circ u(x)$ avec $u(x) = \dots$ et $v(x) = \dots$ d'où $u'(x) = \dots$ et $v'(x) = \dots$

Alors $f'(x) = u'(x) \times v'[u(x)] = \dots$

■ Déterminer la dérivée de la fonction g définie sur $\mathbb R$ par $g(x) = e^{x^2+1}$.

La fonction g définie sur $\mathbb R$ par $g(x)=e^{x^2+1}$ est dérivable sur $\mathbb R$ comme composée de fonctions dérivable sur $\mathbb R$

On a $g(x) = e^{x^2 + 1}$ avec $u(x) = \dots$ et $v(x) = \dots$ d'où $u'(x) = \dots$ et $v'(x) = \dots$ Alors $g'(x) = u'(x) \times v'[u(x)] = \dots$

■ Déterminer la dérivée de la fonction h définie sur \mathbb{R} par $h(x) = (2x^2 + 3x)^4$.

La fonction h définie sur $\mathbb R$ par $h(x) = (2x^2 + 3x)^4$ est dérivable sur $\mathbb R$ comme composée de fonctions dérivable sur $\mathbb R$

On a $f(x) = v \circ u(x)$ avec $u(x) = \dots$ et $v(x) = \dots$ d'où $u'(x) = \dots$ et $v'(x) = \dots$

Alors $f'(x) = u'(x) \times v'[u(x)] =$

Variations de fonctions composées

Propriété

- Si deux fonctions u et v sont de même monotonie (c'est à dire toutes deux croissantes ou toutes deux décroissantes), alors la fonction $v \circ u$ est croissante.
- Si deux fonctions u et v sont de monotonie contraire (c'est à dire l'une croissante et l'autre décroissante), alors la fonction $v \circ u$ est décroissante.

Rappel sur les fonctions \sqrt{u} , u^n et e^u

Soit u une fonction dérivable sur un intervalle I et n désigne un entier relatif non nul.

Fonctions composées	Dérivées
u^2	2u'u
u^n avec $(n \in \mathbb{Z}^*)$ et $u \neq 0$ si $n < 0$	$nu^{n-1}u'$
\sqrt{u} avec $u > 0$	$\frac{u'}{2\sqrt{u}}$
$\frac{1}{u}$ avec $u \neq 0$	$-\frac{u'}{u^2}$
$\frac{1}{u^n} \text{ avec } u \neq 0$	$-\frac{nu'}{u^{n+1}}$
e^u	$u'e^u$
ln(u) avec $u > 0$	$\frac{u'}{u}$

I.3 Dérivée seconde

Définition 2 : Dérivée seconde

Soit f une fonction dérivable sur un intervalle I et f' sa fonction dérivée.

La fonction f est deux fois dérivable sur I si f' est elle-même dérivable sur I.

On note f'' la dérivée de f' et elle est appelée dérivée seconde de f.

Exemples : Déterminer la dérivée seconde de la fonction f définie sur $\mathbb R$ par $f(x) = \ln(x^2 + 1)$.

La fonction f définie sur $\mathbb R$ par $f(x) = \ln(x^2 + 1)$ est dérivable deux fois sur $\mathbb R$ comme composée de fonctions dérivable sur $\mathbb R$

• On a $f(x) = v \circ u(x)$ avec $u(x) = \dots$ et $v(x) = \dots$ et $v'(x) = \dots$ et $v'(x) = \dots$

Alors $f'(x) = u'(x) \times v'[u(x)] = \dots$

Sinon directement avec $(\ln(u))' = \frac{u'}{u}$ alors $f'(x) = \dots$

• On a $f'(x) = \frac{2x}{x^2 + 1}$

Alors par la dérivée d'un quotient $f''(x) = \dots$

Donc $f''(x) = \dots$

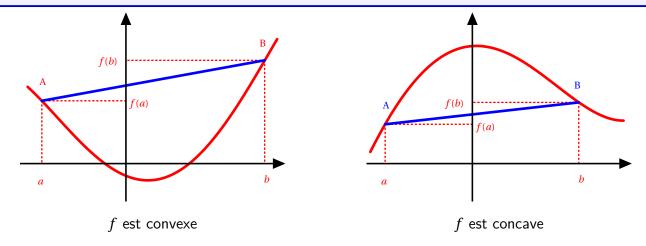
II Convexité d'une fonction

II.1 Approche graphique

Définition 3 : Convexité

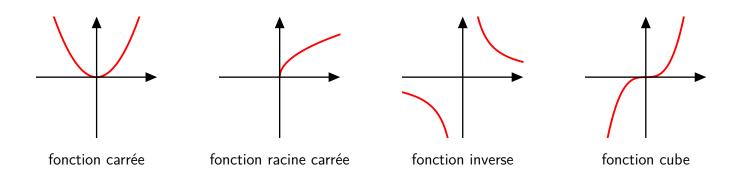
Soit f une fonction définie sur un intervalle I et C_f sa courbe.

- f est concave sur I si si, pour tous réels a et b de I, la portion de la courbe C_f située entre les points A(a; f(a)) et B(b; f(b)) est de la sécante (AB).



Exemples:

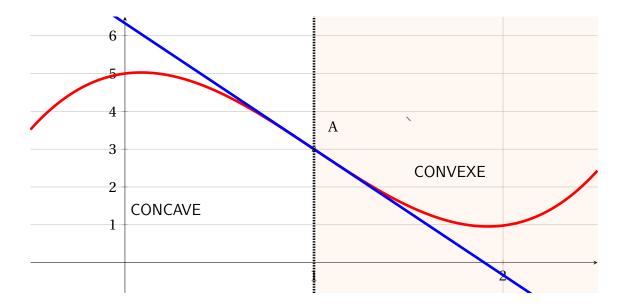
- ullet La fonction carré et la fonction exponentielle sont sur $\mathbb R$.
- La fonction racine carrée est sur $[0; +\infty[$.
- La fonction inverse est sur] $-\infty$; 0[et sur] 0; $+\infty$ [.
- La fonction cube est sur $]-\infty;0]$ et sur $[0;+\infty[$.



II.2 Point d'inflexion

Définition 4 : Point d'infelxion

Soit f une fonction définie et deux fois dérivable sur un intervalle I et A un point de sa courbe C_f . A est un point d'inflexion de C_f si C_f admet une tangente en A et si C_f traverse cette tangente en A.



II.3 Convexité et dérivées

Propriétés

Soit f une fonction définie et deux fois dérivable sur un intervalle I.

Les propositions suivantes sont équivalentes :

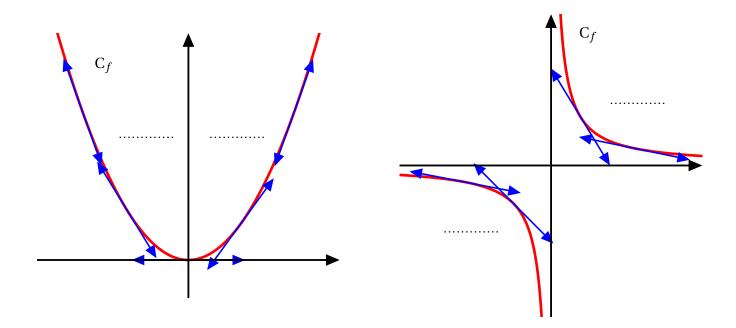
- $\bullet \ \, f \ \, \text{est convexe sur I} \quad \Longleftrightarrow \quad f' \ \, \text{est} \ \, \qquad \qquad \text{sur I} \quad \Longleftrightarrow \quad f'' \ \, \text{est} \ \, \qquad \qquad \text{sur I} \\$

II.4 Convexité et tangentes

Propriétés

Soit I un intervalle sur lequel f est dérivable.

- f est convexe sur I si et seulement si C_f est au-dessus de toutes ses tangentes.
- ullet f est concave sur I si et seulement si \mathbf{C}_f est en-dessous de toutes ses tangentes.



Remarque : Une fonction croissante et convexe sur un intervalle I est une fonction qui croît "de plus en plus vite" sur I. Les pentes des tangentes à sa courbe augmentent quand les abscisses augmentent.

Pour une fonction croissante et concave, c'est le contraire : elle croît "de moins en moins vite".

 $\underline{\text{D\'emonstration}:} \text{ Si une fonction } f \text{ deux fois d\'erivable sur un intervalle I est convexe sur I alors toutes les tangentes à <math>C_f$ sont en dessous de C_f

Soit $a \in I$, on note T_a la tangente à la courbe C_f au point d'abscisse a, ainsi : $T_a : y = f'(a)(x-a) + f(a)$ On pose d(x) = f(x) - (f'(a)(x-a) + f(a))

La fonction d est définie, continue et dérivable sur I, car la fonction f est définie, continue et dérivable sur I

Soit $x \in I$, d'(x) = ...

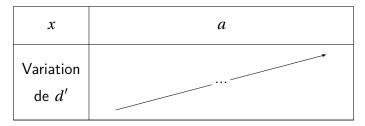
Comme la fonction f' est dérivable sur l'intervalle I, la fonction d' l'est aussi, ainsi $d''(x) = \dots$

La fonction f est convexe sur I, donc f'' est sur l'intervalle I

Comme d''(x) = f''(x), on a que la fonction d'' est sur l'intervalle I, ainsi la fonction d' est sur I

Or d'(a) =

On obtient alors le tableau de variation suivant :



On en déduit alors que :

- Si $x \ge a$, alors $d'(x) \ge 0$ et donc la fonction d est sur $[a; +\infty[$
- Si $x \le a$, alors $d'(x) \le 0$ et donc la fonction d est sur $]-\infty;a]$

Or d(a) =

Cela permet d'obtenir le tableau suivant :

x	a
d'(x)	- 0 +
Variation de <i>d</i>	

Donc $d(x) \ge \dots$

D'où f(x) - (f'(a)(x-a) + f(a)).....0

C'est pourquoi f(x).....f'(a)(x-a)+f(a) , ainsi la courbe \mathbf{C}_f est de \mathbf{T}_a

On vient de démontrer pour toutes les valeurs de $a \in I$, les tangentes T_a sont la courbe C_f

Donc la courbe C_f est de toutes ses tangentes sur l'intervalle I.

II.5 Point d'inflexion

Propriétés

Soient f une fonction deux fois dérivable sur un intervalle I, C_f sa courbe et a un réel de I.

- Si f' change de sens de variation en a, alors C_f admet un point d'inflexion au point d'abscisse a.
- ullet Si f'' s'annule et change de signe en a, alors \mathbf{C}_f admet un point d'inflexion au point d'abscisse a.

Exemple : Soit la fonction f définie sur \mathbb{R} par $f(x) = 2e^{x-1} - x^2 - x$ et C_f sa courbe représentative.

1. Calculer f'(x) et f''(x)

f est dérivable sur $\mathbb R$ et $f'(x) = \dots$ f' est dérivable sur $\mathbb R$ et $f''(x) = \dots$

2. Etudier la convexité de la fonction f

f est convexe si et seulement si : $f''(x) \ge 0 \Leftrightarrow \dots \ge 0 \Leftrightarrow \dots \ge 2$ $\Leftrightarrow e^{x-1} \ge \dots \Leftrightarrow e^{x-1} \ge e^{x}$ $\Leftrightarrow x \ge \dots$ (car la fonction exponentielle est strictement croissante) $\Leftrightarrow x \ge \dots$

Donc f est convexe sur

Inversement, f est si et seulement si $x \le 1$

3. Montrer que f admet un point d'inflexion A et préciser les coordonnées de A

Le point d'inflexion correspond au passage de connexe à concave (ou de concave à connexe).

D'après la question précédente, le point d'inflexion est le point de la courbe qui a pour abscisse ...

L'ordonnée de ce point est $f(1) = \dots$

Le point d'inflexion est donc A(....;....)

4. Quelle est l'équation de la tangente à C_f au point A?

L'équation de la tangente (T) à C_f au point A(1;0) est donnée par la formule :

$$y = f'(1)(x-1) + f(1)$$
 avec $f'(1) = \dots$ et $f(1) = \dots$

ce qui donne : $y = \dots$

5. En déduire que pour tout $x \ge 1$: $e^{x-1} \ge \frac{1}{2}(x^2+1)$

Pour $x \ge 1$ la fonction est convexe, donc la courbe est situé au-dessus de la tangente (T).

Cela se traduit par : $f(x) \ge \dots$

c'est à dire : $2e^{x-1} - x^2 - x \ge -x + 1$ \Leftrightarrow $2e^{x-1} \ge \dots \Leftrightarrow 2e^{x-1} \ge \dots \Leftrightarrow 2e^{x-1} \ge \dots$

Donc $e^{x-1} \ge \frac{1}{2} (x^2 + 1)$