

Méthode : La coplanarité de points en utilisant leurs coordonnées

Il s'agit de démontrer que trois vecteurs sont coplanaires en écrivant l'un des vecteurs en fonction des deux autres.

Exercice

Dans un repère $(0; \vec{i}, \vec{j}, \vec{k})$ de l'espace, démontrer que les points A(1;2;0), B(-1;1;1), C(1;4;1) et D(3;-1;-3) sont coplanaires.

Correction

On a
$$\overrightarrow{AB}\begin{pmatrix} -2\\ -1\\ 1 \end{pmatrix}$$
; $\overrightarrow{AC}\begin{pmatrix} 0\\ 2\\ 1 \end{pmatrix}$ et $\overrightarrow{AD}\begin{pmatrix} 2\\ -3\\ -3 \end{pmatrix}$.

De plus \overrightarrow{AB} et \overrightarrow{AC} ne sont pas colinéaires, car leurs coordonnées ne sont pas proportionnelles.

Alors
$$\overrightarrow{AD} = \alpha \overrightarrow{AB} + \beta \overrightarrow{AC} \Leftrightarrow \begin{cases} 2 = -2\alpha \\ -3 = -\alpha + 2\beta \\ -3 = \alpha + \beta \end{cases} \Leftrightarrow \begin{cases} \alpha = -1 \\ \beta = -2 \end{cases}$$

Le système ayant un unique couple solution, les vecteurs \overrightarrow{AB} , \overrightarrow{AC} et \overrightarrow{AD} sont coplanaires Donc les points A, B, C et D sont coplanaires.