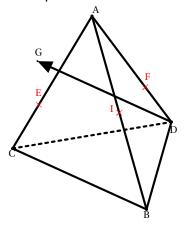


Méthode : Démontrer que quatre points sont coplanaires

Il s'agit de démontrer que trois vecteurs sont coplanaires en écrivant l'un en fonction des deux autres.



Exercice

Soit ABCD un tétraèdre, I le milieu de [AB] ; E et F les points définis par $\overrightarrow{AE} = \frac{2}{3}\overrightarrow{AC}$ et $\overrightarrow{AF} = \frac{2}{3}\overrightarrow{AD}$ et G le point tel que BCGD soit un parallélogramme.

- 1. Exprimer les vecteurs \overrightarrow{IE} , \overrightarrow{IF} et \overrightarrow{IG} en fonction de \overrightarrow{AB} , \overrightarrow{AC} et \overrightarrow{AD} .
- 2. En déduire qu'il existe deux réels α et β tels que $\overrightarrow{IG} = \alpha \overrightarrow{IE} + \beta \overrightarrow{IF}$.
- 3. En déduire que les points I, E, G et F sont coplanaires.

Correction

1.
$$\overrightarrow{IE} = \overrightarrow{IA} + \overrightarrow{AE} = -\frac{1}{2}\overrightarrow{AB} + \frac{2}{3}\overrightarrow{AC}$$
.
 $\overrightarrow{IF} = \overrightarrow{IA} + \overrightarrow{AF} = -\frac{1}{2}\overrightarrow{AB} + \frac{2}{3}\overrightarrow{AD}$.
 $\overrightarrow{IG} = \overrightarrow{IA} + \overrightarrow{AD} + \overrightarrow{DG} = -\frac{1}{2}\overrightarrow{AB} + \overrightarrow{AD} + \overrightarrow{BC} = -\frac{1}{2}\overrightarrow{AB} + \overrightarrow{AD} + \overrightarrow{BA} + \overrightarrow{AC} = -\frac{3}{2}\overrightarrow{AB} + \overrightarrow{AD} + \overrightarrow{AC}$.

2. Il existe deux réels α et β tels que $\overrightarrow{IG} = \alpha \overrightarrow{IE} + \beta \overrightarrow{IF}$

soit
$$-\frac{3}{2}\overrightarrow{AB} + \overrightarrow{AD} + \overrightarrow{AC} = -\frac{\alpha}{2}\overrightarrow{AB} + \frac{2\alpha}{3}\overrightarrow{AC} - \frac{\beta}{2}\overrightarrow{AB} + \frac{2\beta}{3}\overrightarrow{AD}$$

Pour obtenir cette égalité, il suffit de prendre α et β tels que : $-\frac{3}{2} = -\frac{\alpha}{2} - \frac{\beta}{2}$ et $\frac{2}{3}\alpha = 1$ et $\frac{2}{3}\beta = 1$, soit, $\alpha = \frac{3}{2}$ et $\beta = \frac{3}{2}$. D'où $\overrightarrow{IG} = \frac{3}{2}\overrightarrow{IE} + \frac{3}{2}\overrightarrow{IF}$

3. On en déduit que les vecteurs \overrightarrow{IE} , \overrightarrow{IF} et \overrightarrow{IG} sont coplanaires, donc les points I,E,G et F sont coplanaires.