

Nom et prénom :

Exercice 1.

On considère les points A(2; 1; 0), B(1; 2; 3) et les vecteurs
$$\overrightarrow{u}$$
 $\begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$ et \overrightarrow{v} $\begin{pmatrix} 1 \\ 2 \\ -1 \end{pmatrix}$.

- 1. Donner une représentation paramétrique de la droite (d) passant par A et de vecteur directeur \vec{u} .
- 2. Donner une représentation paramétrique de la droite (d') passant par B et de vecteur directeur \overrightarrow{v} .
- **3.** Le point C(1; 0; -1) appartient-il à (d)? à (d')?
- **4.** Les droites (d) et (d') sont-elles sécantes?

Correction:

On considère les points A(2; 1; 0), B(1; 2; 3) et les vecteurs
$$\overrightarrow{u} \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$$
 et $\overrightarrow{v} \begin{pmatrix} 1 \\ 2 \\ -1 \end{pmatrix}$.

1. Une représentation paramétrique de la droite (d) passant par A et de vecteur directeur \overrightarrow{u} est

$$\begin{cases} x = x_{A} + tx_{\overrightarrow{u}} \\ y = y_{A} + ty_{\overrightarrow{u}} \\ z = z_{A} + tz_{\overrightarrow{u}} \end{cases}, t \in \mathbb{R} \Leftrightarrow \begin{cases} x = 2 + t \\ y = 1 + t \\ z = t \end{cases}$$

2. De même, une représentation paramétrique de la droite (d') passant par B et de vecteur directeur \rightarrow

$$\begin{cases} x = 1 - s \\ y = 2 + 2s \quad , \quad s \in \mathbb{R} \\ z = 3 + s \end{cases}$$

3. Le point C(1; 0; -1)) appartient à (d) s'il existe
$$t$$
 tel que
$$\begin{cases} 2+t=1 \\ 1+t=0 \\ t=-1 \end{cases} \Leftrightarrow \begin{cases} t=-1 \\ t=-1 \end{cases}$$

C appartient à (d) pour s = -1

Le point C(1; 0; -1)) appartient à
$$(d')$$
 s'il existe s tel que
$$\begin{cases} 1-s=1 \\ 2+2s=0 \\ 3+s=-1 \end{cases} \Leftrightarrow \begin{cases} s=0 \\ s=-1 \end{cases}$$
, système
$$s=-4$$

incompatible

C n'appartient pas à (d')

4. (d) et (d') sont sécantes s'il existe un coupe (t; s) tel que

$$\begin{cases} 2+t=1-s \\ 1+t=2+2s & \text{. On remplace } t \text{ par } 3+s : \\ t=3+s \end{cases}$$

$$\begin{cases} 2+3+s=1-s \\ 1+3+s=2+2s & \Leftrightarrow \begin{cases} 2s=-4 \\ 2=s & \Leftrightarrow \\ t=3+s \end{cases} \Leftrightarrow \begin{cases} s=-2 \\ s=2 & \text{, système incompatible} \\ t=3+s \end{cases}$$

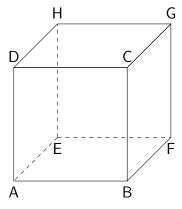
$$(d) \text{ et } (d') \text{ ne sont pas sécantes} .$$

Exercice 2.

ABCDEFGH est un cube. I et J sont les points définis par $\overrightarrow{DI} = \frac{1}{4} \overrightarrow{DC}$ et $\overrightarrow{CJ} = \frac{1}{4} \overrightarrow{CB}$.

1. Partie vectorielle

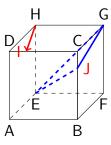
- **a.** Exprimer les vecteurs \overrightarrow{GE} , \overrightarrow{GJ} et \overrightarrow{HI} en fonction des vecteurs \overrightarrow{DA} , \overrightarrow{DC} et \overrightarrow{DH} .
- **b.** Déterminer deux réels a et b tels que $\overrightarrow{HI} = a\overrightarrow{GE} + b\overrightarrow{GJ}$
- **c.** En déduire que la droite (HI) est parallèle au plan (GEJ).
- **2.** Dans le repère $(A, \overrightarrow{AB}, \overrightarrow{AE}, \overrightarrow{AD})$
 - a. Déterminer, sans justifier, les coordonnées de A, G, E, H, I et J.
 - **b.** A l'aide des coordonées, prouver que les vecteurs \overrightarrow{HI} , \overrightarrow{GE} et \overrightarrow{GJ} ne forment pas une base de l'espace.



Correction:

ABCDEFGH est un cube.

I et J sont les points définis par $\overrightarrow{DI} = \frac{1}{4} \overrightarrow{DC}$ et $\overrightarrow{CJ} = \frac{1}{4} \overrightarrow{CB}$.



- 1. Partie vectorielle
 - a. Exprimer les vecteurs \overrightarrow{GE} , \overrightarrow{GJ} et \overrightarrow{HI} en fonction des vecteurs \overrightarrow{DA} , \overrightarrow{DC} et \overrightarrow{DH} .

$$\overrightarrow{GE} = \overrightarrow{GF} + \overrightarrow{FE} = \overrightarrow{DA} - \overrightarrow{DC}$$

$$\overrightarrow{GJ} = \overrightarrow{GC} + \overrightarrow{CJ} = -\overrightarrow{DH} + \frac{1}{4}\overrightarrow{CB} = \frac{1}{4}\overrightarrow{DA} - \overrightarrow{DH}$$

$$\overrightarrow{HI} = \overrightarrow{HD} + \overrightarrow{DI} = -\overrightarrow{DH} + \frac{1}{4}\overrightarrow{DC} = \frac{1}{4}\overrightarrow{DC} - \overrightarrow{DH}$$

b. Déterminer deux réels a et b tels que $\overrightarrow{\mathrm{HI}} = a\overrightarrow{\mathrm{GE}} + b\overrightarrow{\mathrm{GJ}}$

On a
$$\overrightarrow{\mathrm{HI}} = a\overrightarrow{\mathrm{GE}} + b\overrightarrow{\mathrm{GJ}}$$
 équivaut à $\frac{1}{4}\overrightarrow{\mathrm{DC}} - \overrightarrow{\mathrm{DH}} = a\left(\overrightarrow{\mathrm{DA}} - \overrightarrow{\mathrm{DC}}\right) + b\left(\frac{1}{4}\overrightarrow{\mathrm{DA}} - \overrightarrow{\mathrm{DH}}\right)$

Donc
$$\frac{1}{4}\overrightarrow{DC} - \overrightarrow{DH} = a \overrightarrow{DA} - a \overrightarrow{DC} + \frac{b}{4}\overrightarrow{DA} - b \overrightarrow{DH}$$

Alors
$$\left(a + \frac{b}{4}\right) \overrightarrow{DA} + \left(-a - \frac{1}{4}\right) \overrightarrow{DC} + (-b + 1) \overrightarrow{DH} = \overrightarrow{0}$$

Comme \overrightarrow{DA} , \overrightarrow{DC} \overrightarrow{DH} ne sont pas coplanaires,

cela implique que :
$$\begin{cases} a+\frac{1}{4}b=0\\ -a-\frac{1}{4}=0 \end{cases} \text{ donc } \begin{cases} a=-\frac{1}{4}\\ b=1 \end{cases}$$

Donc
$$\overrightarrow{HI} = -\frac{1}{4} \overrightarrow{GE} + \overrightarrow{GJ}$$

c. En déduire que la droite (HI) est parallèle au plan (GEJ).

On sait que
$$\overrightarrow{HI} = -\frac{1}{4} \overrightarrow{GE} + \overrightarrow{GJ}$$

Le vecteur \overrightarrow{HI} est coplanaire avec les deux vecteurs non colinéaires \overrightarrow{GE} et \overrightarrow{GJ} du plan (GEJ),

Donc la droite (HI) est parallèle au plan (GEJ)

- **2.** Dans le repère $(A, \overrightarrow{AB}, \overrightarrow{AE}, \overrightarrow{AD})$
 - **a.** On a A(0; 0; 0), G(1; 1; 1), E(0; 1; 0), H(0; 1; 1), I(0,25; 0; 1) et J(1; 0; 0,75).
 - **b.** A l'aide des coordonées, prouver que les vecteurs \overrightarrow{HI} , \overrightarrow{GE} et \overrightarrow{GJ} ne forment pas une base de l'espace.

On a
$$\overrightarrow{HI}$$
 $\begin{pmatrix} 0,25\\ -1\\ 0 \end{pmatrix}$, \overrightarrow{GE} $\begin{pmatrix} -1\\ 0\\ -1 \end{pmatrix}$ et \overrightarrow{GJ} $\begin{pmatrix} 0\\ -1\\ -0,25 \end{pmatrix}$

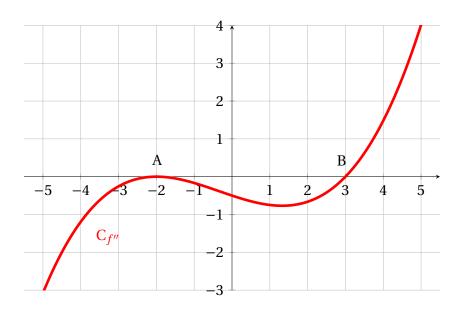
On cherche à savoir s'il existe deux réels a et b telque $\overrightarrow{HI} = a\overrightarrow{GE} + b\overrightarrow{GJ}$

On retouve bien
$$\left\{ \begin{array}{c} 0,25=-a \\ -1=-b \\ 0=-a-0,25b \end{array} \right. \left\{ \begin{array}{c} a=-0,25 \\ b=1 \end{array} \right.$$

Donc $\overrightarrow{HI} = -0.25\overrightarrow{GE} + \overrightarrow{GJ}$

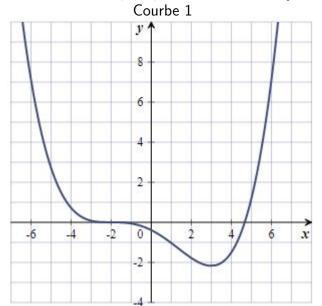
D'où les vecteurs sont coplanaires et ne forment donc pas une base de l'espace

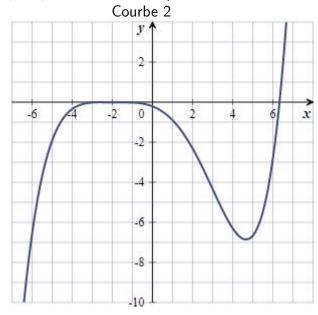
Exercice 3. On considère une fonction f définie sur \mathbb{R} et deux fois dérivable. On donne ci-dessous la courbe représentative de la fonction f'', dérivée seconde de la fonction f, dans un repère orthonormé. Les points A(-2;0) et B(3;0) appartiennent à la courbe.



Chaque réponse sera justifiée.

- 1. La courbe représentative de f admet-elle des points d'inflexion?
- 2. Sur quels intervalles, la fonction est-elle convexe? Est-elle concave?
- 3. On note f' la dérivée de la fonction f. Donner le tableau de variation de la fonction f'.
- **4.** Une des deux courbes ci-dessous est la représentation graphique de la fonction f et l'autre celle de f'. Déterminer la courbe qui représente la fonction f et celle qui représente la dérivée f'.





Correction:

1. La courbe représentative de la fonction f'' nous donne le signe de f''(x) :

x	$-\infty$		3		+∞
f''(x)		_	0	+	

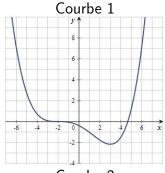
La dérivée seconde s'annule en changeant de signe pour x=3 donc la courbe représentative de la fonction f admet un point d'inflexion d'abscisse 3

2. D'après le tableau de signe de f''(x), on peut en déduire que : la dérivée seconde est négative sur $]-\infty;3]$, donc la fonction est concave sur $]-\infty;3]$ la dérivée seconde est positive sur $[3;+\infty[$, donc la fonction est convexe sur $[3;+\infty[$

3. Les variations de la fonction f' se déduisent du signe de sa dérivée. D'où le tableau de variation de la fonction :

x	$-\infty$	3	+∞
f''(x)		- о	+
Variation de f'			,

4.



Courbe 2

La courbe 1 est la courbe représentative d'une fonction décroissante sur $]-\infty;3]$ et croissante sur $[3;+\infty[$.

C'est la seule des deux courbes susceptible de représenter la $\boxed{ \text{fonction dériv\'ee } f' }$

La courbe 2 est la courbe représentative d'une fonction concave sur $]-\infty;3]$ et convexe sur $[3;+\infty[$.

C'est la seule des deux courbes susceptible de représenter la \lceil fonction $f \rceil$

Exercice 4. Déterminer le point d'inflexion sur la représentation graphique de la fonction f définie sur \mathbb{R} par $f(x) = x^3 - 12x^2 + 6x$.

Correction:

Pour déterminer un point d'inflexion, il faut étudier le signe de la dérivée seconde de la fonction.

On a $f(x) = x^3 - 12x^2 + 6x$ alors e fonction f est deux fois dérivable sur \mathbb{R} , on obtient :

$$f'(x) = 3x^2 - 24x$$

$$f''(x) = 6x - 24$$

Alors

x	$-\infty$		4		+∞
6x - 24		_	0	+	
f''(x)		-	0	+	

La dérivée seconde s'annule en changeant de signe pour x=4 d'où la courbe représentative de la fonction f admet un point d'inflexion d'abscisse 4

et
$$f(4) = 4^3 - 12 \times 4^2 + 6 \times 4 = -104$$

Donc le point d'inflexion sur la représentation graphique de la fonction f est pour coordonnées (4;-104)