

Méthode et exercices : Théorème des valeurs intermédiaires

I Rappel : Théorème des valeurs intermédiaires et son corollaire

Théorème des valeurs intermédiaires

On considère une fonction f définie et **continue** sur un intervalle I, a et b sont deux réels de I. Pour tout réel k compris entre f(a) et f(b), il <u>existe au moins</u> un réel c compris entre a et b tel que f(c) = k

Corollaire du théorème des valeurs intermédiaires

Si f est une fonction définie, **continue** et **strictement monotone** sur [a;b], alors quel que soit le réel k compris entre f(a) et f(b), l'équation f(x) = k admet <u>une unique solution</u> dans [a;b]

Il Comment savoir quand il faut utiliser ce théorème?

- 1. Le T.V.I. s'utilise dans le cas où on demande de montrer qu'une équation du type f(x) = k admet au moins une solution.
- 2. Le TVI ne permet pas de déterminer le nombre de solutions, ni de calculer la ou les solutions.
- **3.** Le corollaire du TVI s'utilise dans le cas où on demande de montrer qu'une équation du type f(x) = k admet une unique solution.

Par exemple : montrer que l'équation f(x) = k admet une unique solution sur [a; b].

4. Et dans la plupart des cas il s'agit de l'équation f(x) = 0.

Par exemple: Montrer que l'équation f(x)=0 admet une unique solution α sur $[0;+\infty[$.

III A quoi cela va-t-il servir dans la suite de l'exercice?

Le théorème des valeurs intermédiaires nous a permis d'affirmer que f(x) prend la valeur 0 : cela correspond à un **changement de signe** de f(x).

Alors l'analyse du tableau des variations de f, couplée à la recherche des zéros, nous donne le signe de f(x).

IV Comment faut-il rédiger?

1. Exemple 1 : antécédent d'un nombre k pour une fonction croissante sur [a;b] Montrer que l'équation f(x) = k admet une unique solution sur [a;b]

On sait que :

- f est définie et continue sur [a;b]
- f est strictement croissante sur [a;b]
- et $f(a)=\ldots$ et $f(b)=\ldots$

Comme $k \in [f(a); f(b)]$

D'après le théorème des valeurs intermédiaires

On en déduit que l'équation f(x) = k admet une unique solution sur [a; b]

2. Exemple 2 : antécédent de 0 pour une fonction décroissante avec f(0)=1 et $\lim_{x\to+\infty} f(x)=-\infty$: Montrer que l'équation f(x)=0 admet une unique solution α sur $[0;+\infty[$.

On sait que

- f est définie et continue sur $[0; +\infty[$
- f est strictement décroissante sur $[0; +\infty[$ à valeurs dans $]-\infty;1]$

Comme $0 \in]-\infty;1]$

D'après le théorème des valeurs intermédiaires,

On en déduit que l'équation f(x) = 0 admet une unique solution sur $[0; +\infty[$.

V Applications

Exercice 1.

On considère la fonction f définie sur \mathbb{R} par $f(x) = \frac{2x^3}{3} - \frac{x^2}{2} - x + 3$

- **1.** Étudier les limites de f en $-\infty$ et en $+\infty$.
- **2.** Dresser le tableau de variations complet de la fonction f.
- **3.** Montrer que l'équation f(x) = 0 n'admet aucune solution sur l'intervalle $[-\frac{1}{2}; +\infty[$.
- **4.** En déduire que l'équation f(x) = 0 admet une unique solution α sur \mathbb{R} .
- **5.** Fournir un encadrement au centième de α .

(**9**)

Correction

1. D'après la limite des termes de plus haut degré on a :

$$\lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} \frac{2x^3}{3} - \frac{x^2}{2} - x + 3 = \lim_{x \to +\infty} \frac{2x^3}{3} = +\infty$$

2. La fonction f est une fonction polynôme. Elle est donc dérivable sur \mathbb{R} et, pour tout $x \in \mathbb{R}$ on a : $f'(x) = 2x^2 - x - 1$

Étudions le signe de cette expression : $\Delta = (-1)^2 - 4 \times 2 \times (-1) = 9 = 3^2 > 0$.

Elle possède donc deux racines : $x_1 = \frac{1-3}{4} = -\frac{1}{2}$ et $x_2 = \frac{1+3}{4} = 1$

On obtient ainsi le tableau de variations suivant :

x	$-\infty$		$-\frac{1}{2}$		1		+∞
f'(x)		+	0	_	0	+	
Variation de f	$-\infty$		79/24		$\frac{13}{6}$		+∞

3. Pour tout $x \ge -\frac{1}{2}$, on a $f(x) \ge \frac{13}{6} > 0$

donc l'équation f(x) = 0 ne possède pas de solution sur $\left[-\frac{1}{2}; +\infty\right[$.

4. On sait que :

- la fonction f est continue sur $\left]-\infty; -\frac{1}{2}\right[$ (car dérivable)
- la fonction f est strictement croissante sur $\left]-\infty; -\frac{1}{2}\right[$ à valeurs dans $\left]-\infty; \frac{79}{24}\right[$

Or
$$0 \in \left[-\infty; \frac{79}{24} \right[$$

D'après le corollaire du théorème des valeurs intermédiaires, l'équation f(x) = 0 possède une unique solution sur $]-\infty; -\frac{1}{2}[$

Donc l'équation f(x) = 0 possède donc une unique solution sur $\mathbb R$

5. En utilisant le menu *table* de la calculatrice on trouve $-1,70 < \alpha < -1,69$

car
$$f(-1,70) \approx \text{ et } f(-1,69) \approx$$