Term	ina	ے حا	Sné	NΛ	ath
16111	IIIIa	IC -	JUC	IVI	alli

Interrogation B

	•••		·· <u> </u>	
Nom :		Pr	rénom :	
	Total	Ex 1	Ex2	
	/10	/5	/5	
Exercice 1.				
1. Déterminer $\lim_{x\to a}$	$m - 4x^3 - 2x^2 + 4x - 6$	-1		
	$3r^2 - r + \sqrt{3}$			
2. Déterminer $\lim_{x\to \infty}$	$\frac{m}{-5x^2 + \frac{1}{2}x + 7}$ pt	uis interpréter grap	hiquement le resultat de	e la limite.
	-2			
3. Déterminer $\lim_{\substack{x \to 0 \\ x > 0}}$	$\frac{1}{5} \frac{1}{x-5}$			
4. Déterminer $\lim_{x \to \infty} x$	$\lim_{(-3)^{-}} \frac{x+5}{x+3} \text{ puis inter}$	préter graphiquemo	ent le resultat de la limi	te.

Exercice 2. On considère la fonction f définie par $f(x) = 2x^3 + 3x^2 - 36x + 12$ sur l'intervalle [-10;3].

1. Justifier que les variations de f sont les suivantes :

x	-10	-3	2	3
f'(x)				
variations				
$de\; f$				

2.	Compléter le tableau de variations de la question 1. (On fera les calculs à la calculatrice).
	Démontrer que l'équation $f(x) = -1000$ admet exactement une solution sur $[-10; -3]$.
J.	Demontrer que requation $f(x) = -1000$ aumet exactement une solution sur $[-10, -3]$.
4.	Justifier que $f(x) = -1000$ n'admet pas de solution sur l'intervalle $[-3;3]$.
	and the Artist of the manner has an arrest and the Artist of the Artist

5.	On note α la solution	n de l'équation	f(x) = -1000.	Donner un	encadrement	de α à 10^{-3}	près.

FACULTATIF

Exercice 3.

On note $\mathbb R$ l'ensemble des nombres réels.

L'espace est muni d'un repère orthonormé $(O; \overrightarrow{\iota}, \overrightarrow{\jmath}, \overrightarrow{k})$.

On considère les points A(-1; 2; 0), B(1; 2; 4) et C(-1; 1; 1).

- 1. a. Démontrer que les points A, B et C ne sont pas alignés.
 - **b.** Calculer le produit scalaire $\overrightarrow{AB} \cdot \overrightarrow{AC}$.
 - c. En déduire la mesure de l'angle \widehat{BAC} , arrondie au degré.
- 2. Soit \overrightarrow{n} le vecteur de coordonnées $\begin{pmatrix} 2 \\ -1 \\ -1 \end{pmatrix}$.
 - **a.** Démontrer que \overrightarrow{n} est un vecteur normal au plan (ABC).
 - b. Déterminer une équation cartésienne du plan (ABC).
- **3.** Soient \mathscr{P}_1 le plan d'équation 3x+y-2z+3=0 et \mathscr{P}_2 le plan passant par O et parallèle au plan d'équation x-2z+6=0.
 - **a.** Démontrer que le plan \mathscr{P}_2 a pour équation x=2z.
 - **b.** Démontrer que les plans \mathscr{P}_1 et \mathscr{P}_2 sont sécants.
 - **c.** Soit la droite $\mathscr D$ dont un système d'équations paramétriques est $\begin{cases} x=2t\\ y=-4t-3,\ t\in\mathbb R.\\ z=t \end{cases}$

Démontrer que \mathscr{D} est l'intersection des plans \mathscr{P}_1 et \mathscr{P}_2 .

4. Démontrer que la droite ${\mathscr D}$ coupe le plan (ABC) en un point I dont on déterminera les coordonnées.

Exercice 4.

Pour chacune des affirmations suivantes, indiquer si elle est vraie ou fausse et justifier la réponse.

Il est attribué un point par réponse exacte correctement justifiée. L'absence de réponse n'est pas pénalisée. Une réponse non justifiée n'est pas prise en compte.

L'espace est muni d'un repère orthonormé $(O; \overrightarrow{i}, \overrightarrow{j}, \overrightarrow{k})$.

Les points A, B, C sont définis par leurs coordonnées : A(3; -1; 4), B(-1; 2; -3), C(4; -1; 2).

Le plan \mathscr{P} a pour équation cartésienne : 2x-3y+2z-7=0.

La droite Δ a pour représentation paramétrique $\begin{cases} x = -1 + 4t \\ y = 4 - t , t \in \mathbb{R}. \end{cases}$ z = -8 + 2t

- Affirmation 1 : Les droites Δ et (AC) sont orthogonales.
- Affirmation 2 : Les points A, B et C déterminent un plan et ce plan a pour équation cartésienne 2x + 5y + z 5 = 0.
- Affirmation 3 : Tous les points dont les coordonnées $(x \; ; \; y \; ; \; z)$ sont données par $\begin{cases} x = 1 + \; s 2s' \\ y = 1 2s + \; s', \; s \in \mathbb{R}, \, s' \in \mathbb{R} \text{ appartiennent au plan } \mathscr{P}. \\ z = 1 4s + 2s' \end{cases}$
- Affirmation 4 : Il existe un plan parallèle au plan \mathscr{P} qui contient la droite Δ .

Exercice 5.

Soit (u_n) la suite définie par $\begin{cases} u_0 &= \frac{1}{2} \\ u_{n+1} &= \frac{1}{2} \left(u_n + \frac{1}{2} \right)^2 - \frac{1}{8} \quad (n \in \mathbb{N}) \end{cases}$

- **1.** Montrer que pour tout $n \in \mathbb{N}$, $0 \le u_{n+1} \le u_n \le 1$.
- **2.** En déduire que (u_n) converge et déterminer sa limite.