

Nom:.....

Prénom:....

Total

Ex 1

Ex2

/10

/5

/5

Exercice 1.

- **1.** Déterminer $\lim_{x \to -\infty} 4x^3 2x^2 + 4x 1$
- 2. Déterminer $\lim_{x\to +\infty} \frac{3x^2-x+\sqrt{2}}{-8x^2+\frac{1}{2}x+7}$ puis interpréter graphiquement le resultat de la limite.
- 3. Déterminer $\lim_{\substack{x \to 5 \\ x > 5}} \frac{-2}{x 5}$
- **4.** Déterminer $\lim_{x \to (-2)^-} \frac{x+4}{x+2}$ puis interpréter graphiquement le resultat de la limite.

Correction:

1. Déterminer $\lim_{x \to -\infty} 4x^3 - 2x^2 + 4x - 1$

La limite en $-\infty$ d'une fonction polynomiale est la limite en $-\infty$ de son monôme de plus haut degré

d'où
$$\lim_{x \to -\infty} 4x^3 - 2x^2 + 4x - 1 = \lim_{x \to -\infty} 4x^3 = -\infty$$

Donc $\lim_{x \to -\infty} 4x^3 - 2x^2 + 4x - 1 = -\infty$

2. Déterminer $\lim_{x\to +\infty} \frac{3x^2-x+\sqrt{2}}{-8x^2+\frac{1}{2}x+7}$ puis interpréter graphiquement le resultat de la limite.

La limite en $+\infty$ d'un quotient de fonctions polynomiales est la limite en $+\infty$ du quotient des monômes de plus haut degré

d'où
$$\lim_{x \to +\infty} \frac{3x^2 - x + \sqrt{2}}{-8x^2 + \frac{1}{2}x + 7} = \lim_{x \to +\infty} \frac{3x^2}{-8x^2} = \lim_{x \to +\infty} \frac{3}{-8} = -\frac{3}{8}$$

Donc
$$\lim_{x \to +\infty} \frac{3x^2 - x + \sqrt{2}}{-8x^2 + \frac{1}{2}x + 7} = -\frac{3}{8}$$

On en déduit que la courbe de la fonction admet une asymptote horizontale d'équation $y=-\frac{3}{8}$

3. Déterminer $\lim_{\substack{x\to 5\\x>5}} \frac{-2}{x-5}$

On sait que $\lim_{\substack{x \to 5 \\ x > 5}} x - 5 = 0^+ \text{ car } x > 5 \iff x - 5 > 0$ d'où $\lim_{\substack{x \to 5 \\ x > 5}} \frac{1}{x - 5} = +\infty$

$$\operatorname{donc} \quad \overline{\lim_{\substack{x \to 5 \\ x > 5}} \frac{-2}{x - 5}} = -\infty$$

4. Déterminer $\lim_{x \to (-2)^-} \frac{x+4}{x+2}$ puis interpréter graphiquement le resultat de la limite.

On sait que

$$\lim_{x \to (-2)^{-}} x + 4 = 2$$

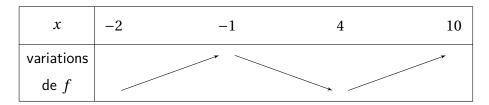
Donc, par quotient,
$$\lim_{x \to (-2)^{-}} \frac{x+4}{x+2} = -\infty$$

Alors la courbe représentative de la fonction admet une asymptote verticale d'équation x = -2.

Exercice 2. 6 points

On considère la fonction f définie par $f(x) = 2x^3 - 9x^2 - 24x + 70$ sur l'intervalle [-4;10].

1. Justifier que les variations de f sont les suivantes :



- 2. Compléter le tableau de variations de la question 1. (On fera les calculs à la calculatrice).
- **3.** Justifier que f(x) = 800 n'admet pas de solution sur l'intervalle [-2;4].
- **4.** Démontrer que l'équation f(x) = 800 admet exactement une solution sur [4;10].
- **5.** On notera α la solution de l'équation f(x) = 800. Donner un encadrement de α à 10^{-3} près.

Correction:

On considère la fonction f définie par $f(x) = 2x^3 - 9x^2 - 24x + 70$ sur l'intervalle [-4; 10].

1. Justifier que les variations de f

f est une fonction polynomiale, elle est donc dérivable sur [-2;10], et $f'(x)=6x^2-18x-24$ C'est un polynôme de degré 2 de discriminant $\Delta=100$. Les deux racines sont $x_1=-1$ et $x_2=4$.

On a donc f'(x) = 6(x+1)(x-4).

X	-2		-1		4		10
6		+		+		+	
x + 1		_	0	+		+	
x-4		_		_	0	+	
f'(x) = 6(x+1)(x-4)		+	0	_	0	+	

On en déduit le signe de f'(x) en fonction de x et les variations de f.

		, ,	` '				<i>J</i>
x	-2		-1		4		10
f'(x)		+	0	_	0	+	
variations			83 .				930
$de\; f$	66				-42		

2. Compléter le tableau de variations de la question 1. (On fera les calculs à la calculatrice).

On a
$$f(-2) = 66$$
, $f(-1) = 83$, $f(4) = -42$ et $f(10) = 930$.

3. Justifier que f(x) = 800 n'admet pas de solution sur l'intervalle [-2;4].

D'après le tableau de variations, pour tout $x \in [-2; 4]$, $f(x) \le 83 < 800$.

Ainsi on en déduit que l'équation f(x) = 800 n'a pas de solution sur [-2;4].

4. Démontrer que l'équation f(x) = 800 admet exactement une solution sur [4;10].

On sait que

- f est une fonction **continue** sur [4;10] car elle est polynomiale.
- f est strictement décroissante sur [4;10] à valeurs dans [-42;930].
- Comme -42 < 800 < 930

Donc d'après le théorème des valeurs intermédiaires,

il existe un unique
$$\alpha \in [4;10]$$
 tel que $f(\alpha) = 800$.

5. On notera α la solution de l'équation f(x) = 800. Donner un encadrement de α à 10^{-3} près.

D'après la calculatrice, on obtient successivement

- f(9) = 583 et f(10) = 930. Donc $\alpha \in]9; 10[$.
- $f(9,6) \approx 780$ et $f(9,7) \approx 816$. Donc $\alpha \in]9,9;10[$.
- $f(9,65) \approx 798$ et f(9,66) = 801. Donc $\alpha \in]9,65;9,66[$.
- $f(9,656) \approx 799,9$ et $f(9,957) \approx 800,1$.

Donc $\alpha \in]9,656;9,657[$

Exercice 3. 4 points

Soit (u_n) la suite définie par $\begin{cases} u_0 &= 1 \\ u_{n+1} &= \frac{1}{4}(x+1)^2 - \frac{1}{4} \quad (n \in \mathbb{N}) \end{cases}$

- **1.** Montrer que pour tout $n \in \mathbb{N}$, $0 \le u_{n+1} \le u_n \le 1$.
- **2.** En déduire que (u_n) converge et déterminer sa limite.

Correction:

Soit (u_n) la suite définie par $\begin{cases} u_0 &= 1 \\ u_{n+1} &= \frac{1}{4}(x+1)^2 - \frac{1}{4} \quad (n \in \mathbb{N}) \end{cases}$

1. Montrer que pour tout $n \in \mathbb{N}$, $0 \le u_{n+1} \le u_n \le 1$.

Pour tout $n \in \mathbb{N}$, notons (\mathscr{P}_n) : $0 \le u_{n+1} \le u_n \le 1$

- **a.** Initialisation. On a $u_0=1$ et $u_1=\frac{3}{4}=0,75$. Donc $0 \le u_1 \le u_0 \le 1$ d'où (\mathcal{P}_0) est vraie
- **b.** Hérédité. Supposons que pour un certain $k \in \mathbb{N}$: $0 \le u_{k+1} \le u_k \le 1$

Ainsi, en ajoutant 1, on a $1 \le u_{k+1} + 1 \le u_k + 1 \le 2$

La fonction $x \mapsto x^2$ étant croissante sur $[0; +\infty[$,

on en déduit que $1 \le (u_{k+1} + 1)^2 \le (u_k + 1)^2 \le 4$

Comme on multiplie par $\frac{1}{4} > 0$, on a $\frac{1}{4} \le \frac{1}{4} (u_{k+1} + 1)^2 \le \frac{1}{4} (u_k + 1)^2 \le 1$

Donc, en retranchant $\frac{1}{4}$, on a $\frac{1}{4} - \frac{1}{4} \le \frac{1}{4} (u_{k+1} + 1)^2 - \frac{1}{4} \le \frac{1}{4} (u_k + 1)^2 - \frac{1}{4} \le 1 - \frac{1}{4} \le 1$

On obtient finalement (\mathscr{P}_{k+1}) : $0 \le u_{k+2} \le u_{k+1} \le 1$ d'où (\mathscr{P}_{k+1}) est vraie.

c. Conclusion. La propriété est vraie pour n=0 et héréditaire à partir de ce rang, d'après le principe de récurrence, elle est vraie pour tout entier naturel n

Donc pour tout $n \in \mathbb{N}$, on a $0 \le u_{n+1} \le u_n \le 1$

2. En déduire que (u_n) converge et déterminer sa limite.

D'après la question 1, pour tout $n \in \mathbb{N}$, on a $0 \le u_{n+1} \le u_n \le 1$

On peut en déduire que la suite (u_n) est décroissante et minorée par 0

D'après le **théorème de convergence**, la suite (u_n) possède donc une limite ℓ .

Notons g la fonction définie sur \mathbb{R} par $g(x) = \frac{1}{4}(x+1)^2 - \frac{1}{4}$ est continue car polynomiale (on a ici la forme canonique d'un polynome de degré 2).

D'après le **théorème du point fixe**, puisque pour tout $n \in \mathbb{N}$, $u_{n+1} = g(u_n)$, on en déduit que ℓ est solution de l'équation g(x) = x et que par ailleurs $0 \le \ell \le u_0$.

Résolvons cette équation :

$$g(x) = x \Longleftrightarrow \frac{1}{4}(x+1)^2 - \frac{1}{4} = x \Longleftrightarrow \frac{1}{4}x^2 + \frac{1}{2}x = x \Longleftrightarrow \frac{1}{2}x\left(\frac{1}{2}x - 1\right) = 0$$
 Cette équation a deux solutions : 0 et 2.

Comme
$$\ell \leq u_0 < 1$$
, on en déduit que $\ell = 0$, c'est-à-dire $\lim_{n \to +\infty} u_n = 0$.