

Exercice type avec une fonction auxillaire

Exercice:

Soient f et g deux fonctions définies sur \mathbb{R} par, respectivement, $f(x) = -\frac{x^4}{4} + x^3 - 3x^2 + x + 2$ et $g(x) = -x^3 + 3x^2 - 6x + 1$.

- 1. Étudier les variations de la fonction g .
- 2. (a) Calculer g(0) et g(1).
 - (b) Montrer que l'équation g(x) = 0 admet une unique solution $\alpha \in [0;1]$.
 - (c) Déterminer un encadrement de α d'amplitude 10^2 .
 - (d) Déduire de ce qui précède le signe de g(x) selon les valeurs de x.
- 3. Étudier les variations de f .

Correction:

Soient f et g deux fonctions définies sur $\mathbb R$ par, respectivement, $f(x) = -\frac{x^4}{4} + x^3 - 3x^2 + x + 2$ et $g(x) = -x^3 + 3x^2 - 6x + 1$.

1. Étudier les variations de la fonction g .

On a
$$g(x) = -x^3 + 3x^2 - 6x + 1$$

La fonction g est dérivable sur $\mathbb R$ comme fonctions polynomiales.

D'où
$$g'(x) = -3x^2 + 6x - 6$$

On étudie le signe de la dérivée

Alors
$$\Delta = b^2 - 4ac = (6)^2 - 4 \times (-3) \times (-6) = 36 - 72 = -36 < 0$$

Comme le discriminant est négatif et a = -3 < 0

Alors g'(x) est également négatif

Donc la fonction g est strictement décroissante sur $\mathbb R$

2. (a) Calculer g(0) et g(1).

$$g(0) = -0^3 + 3 \times 0^2 - 6 \times 0 + 1 = 1$$

$$g(1) = -1^3 + 3 \times 1^2 - 6 \times 1 + 1 = -1 + 3 - 6 + 1 = -3$$

(b) Montrer que l'équation g(x) = 0 admet une unique solution $\alpha \in [0;1]$.

Sur l'intervalle [0;1] la fonction g est continue et strictement décroissante à valeurs dans [-3;1]

Comme $0 \in [-3;1]$

D'après le théorème des valeurs intermédiaires

On peut affirmer que l'équation g(x) = 0 admet une unique solution sur l'intervalle [0;1].

(c) Déterminer un encadrement de α d'amplitude 10^2 .

On trouve $g(0,10) \approx 0.011368$ et $g(0,19) \approx -0.038559$

Donc $0, 18 < \alpha < 0, 19$

(d) Déduire de ce qui précède le signe de g(x) selon les valeurs de x.

On sait que la fonction g est strictement décroissante sur $\mathbb R$ et qu'elle s'annule en α

On en déduit donc le tableau de signe

x	$-\infty$		α	+∞
g(x)		+		_

3. Étudier les variations de f .

On a
$$f(x) = -\frac{x^4}{4} + x^3 - 3x^2 + x + 2$$

La fonction f est dérivable sur ${\mathbb R}$ comme fonctions polynomiales.

D'où
$$f'(x) = -x^3 + 3x^2 - 6x + 1 = g(x)$$

Alors $f(0,32) \approx f(0,33) \approx 2,04$

x	$-\infty$	α	$+\infty$
f'(x)		+ 0	_
Variation de f		2.04	