

Continuité

Histoire des mathématiques

Le mathématicien allemand Karl Weierstrass (1815; 1897) apporte les premières définitions rigoureuses au concept de limite et de continuité d'une fonction.

I Continuité d'une fonction

Rappel: Rappel: limite d'une fonction en un point

f est une fonction définie sur un intervalle I et a est un nombre qui appartient à I ou qui est une borne de I.

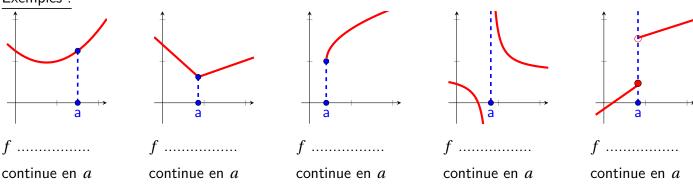
Dire qu'une fonction f a pour limite l lorsque x tend vers a signifie que tout intervalle ouvert contenant l contient toutes les valeurs de f(x) prises par tous les nombres x de l'intervalle I suffisamment proche de a.

Remarque : cette définition traduit l'accumulation des valeurs f(x) autour du nombre l.

Définition : Continuité en a

f est une fonction définie sur un intervalle I, a est un nombre appartenant à I.

Dire que f est continue en a signifie que f a une limite finie en a et que $\lim_{x\to a} f(x) = f(a)$



Remarque : La courbe représentative d'une fonction continue se trace sans lever le crayon.

Continuité Page 1 / 6

Définition : Continuité sur un intervalle

Dire qu'une fonction f est continue sur un intervalle I signifie que f est continue en tout point de I.

Fonctions usuelles

La fonction valeur absolue est continue sur, $x \mapsto |x|$

Les fonctions polynômes sont continues sur, par exemple $x \mapsto x^n$, avec $n \in \mathbb{N}$

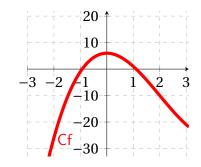
La fonction racine carrée est continue sur, $x \mapsto \sqrt{x}$

La fonction inverse est continue sur et sur , $x \mapsto \frac{1}{x}$

Remarque : Les flèches obliques d'un tableau de variation traduisent la continuité et la stricte monotonie de la fonction sur l'intervalle considéré.

Exemple : la fonction f définie par $f(x) = x^3 - 6x^2 + 6$

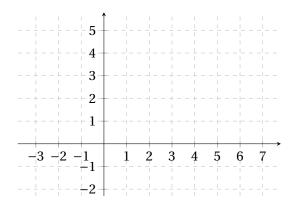
x	$-\infty$	0	4
f'(x)			
Variation			
$de\; f$			



 $\underline{\underline{\mathsf{Exemple}}} \ \underline{\mathsf{Exemple}} \ \underline{\mathsf{Exemp$

 $\begin{cases} f(x) = -x + 2 & pour \ x < 3 \\ f(x) = x - 4 & pour \ 3 \le x < 5 \\ f(x) = -2x + 13 & pour \ x \ge 5 \end{cases}$

La fonction f est-elle continue sur \mathbb{R} ?



Les fonctions $x \mapsto -x+2$; $x \mapsto x-2$ et $x \mapsto -2x+13$ sont des fonctions polynômes donc continues sur \mathbb{R} .

Ainsi la fonction f est continue sur $]-\infty;3[$, sur [3;5[et sur $[5;+\infty[$.

Etudions alors la continuité de f en $\bf 3$ et en $\bf 5$:

• On a $\lim_{\substack{x \to 3 \\ x < 3}} f(x) = \dots$ Et $\lim_{x \to 3} f(x) = \dots$

Comme $\lim_{\substack{x \to 3 \\ x < 3}} f(x) = -1$

Donc la fonction f

• On a $\lim_{\substack{x \to 5 \\ x < 5}} f(x) = \dots$

Et $\lim_{\substack{x \to 5 \\ x > 5}} f(x) = \dots$ Comme $\lim_{\substack{x \to 5 \\ x < 5}} f(x) \dots \lim_{\substack{x \to 5 \\ x > 5}} f(x)$

Donc la limite de f en f en f (on parle de limite

à gauche de 5 et de limite à droite de 5)

La fonction f

 $\underline{\mathsf{Conclusion}:} \mathsf{la} \mathsf{ fonction} \; f \mathsf{ est} \mathsf{ continue} \mathsf{ sur} \ldots \ldots \mathsf{ et} \mathsf{ sur} \ldots \ldots \mathsf{ et}$

(**Ö**)

II Dérivabilité et continuité

Dans ce paragraphe, f est une fonction définie sur un intervalle I, a est un réel appartenant à I.

Propriétés

- ullet Si f est dérivable en a alors f est continue en a
- ullet Si f est dérivable sur I, alors f est continue sur I

Démonstration :

Dire que f est dérivable en a signifie que la fonction ϕ , définie, pour tout h différent de zéro, avec a+h dans I par $\phi(h)=\frac{f(a+h)-f(a)}{h}$ a pour limite f'(a) quand h tend vers zéro.

Pour tout *h* non nul, alors

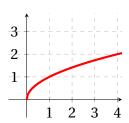
Comme donc

On peut en conclure que $\lim_{x\to a} f(x) = \dots$

Donc

ATTENTION : la réciproque est fausse

<u>Exemple</u>: la fonction racine carrée est continue en zéro mais n'est pas dérivable en zéro

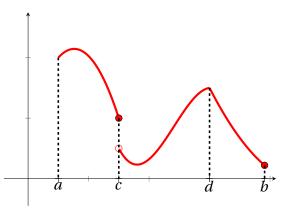


Aspect graphique

Graphiquement, la continuité d'une fonction f se traduit par le fait que la courbe représentative de f est d'un seul morceau.

La représentation graphique ci-contre permet de conjecturer que :

- f est continue sur [a; c]et sur]c; b] mais n'est pas continue
 en c
- lacksquare f est continue en d mais n'est pas dérivable en d
- ullet la courbe admet deux demi-tangentes distinctes au point d.



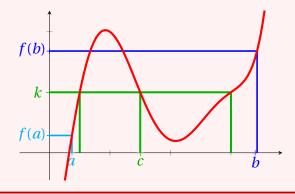
III Résolution d'équations - TVI

Théorème : Théorème des valeurs intermédiaires (admis)

Si f est une fonction définie et continue sur un intervalle [a; b]

Alors pour tout réel k compris entre f(a) et f(b), il existe au moins un réel c compris entre a et b tel que f(c) = k.

En d'autres termes, l'équation f(x) = k admet une solution dans l'intervalle [a; b]



Cas particulier

Si une fonction f est définie et continue sur un intervalle [a; b]

Dans le cas où f(a) et f(b) sont de signes

alors il existe un réel c compris entre a et b tel que f(c) = 0.

Corollaire (admis)

Si une fonction f est définie, continue et sur un intervalle [a;b]

tel que f(c) = k

Autrement dit, l'équation f(x) = k admet solution dans l'intervalle [a; b]

Remarque : Ceci est un théorème d'existence, il ne donne pas la valeur numérique de la solution.

Continuité Page 4 / 6

Exemple : On considère la fonction ,	f définie sur $\mathbb R$ par	$f(x) = x^3 - 3x^2 + 2$.

1. Démontrer que l'équation $f(x) = 0$ admet exactement une solution sur l'intervalle $[2; +\infty[$.
2. A l'aide de la calculatrice, donner un encadrement au centième de la solution.

Remarque : Une autre méthode consiste à déterminer un **encadrement par dichotomie**.

IV Application aux suites

Application de la continuité

Soient f une fonction continue sur un intervalle I et (u_n) une suite d'éléments de I convergeant vers $\alpha \in I$

Alors $\lim_{n\to+\infty} f(u_n) = f(\alpha)$.

Autrement dit, $\lim_{n \to +\infty} f(u_n) = f(\lim_{n \to +\infty} u_n)$

Exemple d'application :

Soit f la fonction définie sur \mathbb{R} par $f(x) = (x+1)^2$ et (u_n) la suite définie pour tout $n \in \mathbb{N}$ par $u_n = 2 + \frac{1}{n+1}$ Alors la fonction f est

 $\mathsf{Et} \lim_{n \to +\infty} u_n = \dots$

 $\mathsf{Donc}\lim_{n\to+\infty} f(u_n) = \dots$

Théorème : Théorème du point fixe

Soit (u_n) une suite définie par u_0 et la relation de récurrence : $u_{n+1} = f(u_n)$.

Si (u_n) est convergente vers l et si f est continue en l

Alors la limite l de (u_n) est solution de l'équation : f(x) = x .

Exemple : Calculer la limite de la suite (u_n) définie par $u_0 = 1$ et $u_{n+1} = \sqrt{2 + u_n}$.

On peut montrer par récurrence que la suite (u_n) est croissante et que pour tout $n, 0 \le u_n \le 2$

La suite (u_n) est alors et par , elle est donc convergente vers une limite ℓ .

La fonction f telle que : $f(x) = \sqrt{2 + x}$ est définie et continue sur] -2; $+\infty$ [.

Comme la suite (u_n) est convergente vers ℓ ,

D'après le théorème du point fixe, ℓ verifie l'équation

En élevant au carré, on trouve : qui admet deux solutions et

Comme la suite (u_n) est, elle converge donc vers