# **CHAPITRE 2** Limites de fonctions

Manuel p. 48-79

## I. Introduction

## Commentaires pédagogiques

Les opérations sur les limites sont admises. L'utilisation de la composition des limites se fait en contexte.

## Objectifs

- → Déterminer une limite en l'infini.
- → Déterminer une limite en un réel.
- → Conjecturer le présence d'asymptotes.
- → Déterminer une limite à l'aide des opérations sur les limites.
- → Utiliser les théorèmes d'encadrement et de comparaison.
- → Déterminer une limite en utilisant la composée de fonctions.
- → Lever une indétermination.

## II. Corrigés

## Pour prendre un bon départ p. 49

#### 1. Calculer des limites

**al** 0 **bl** 0

c)  $+\infty$  d) 0

el -∞

f) \_∞

#### 2. Étudier les variations de fonctions

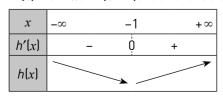
**1.**  $f'(x) = 3x^2 + 6x - 9 = (x - 1)(3x + 9)$  donc le tableau de variations est :



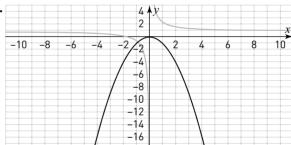
**2.**  $g'(x) = \frac{5}{(4x - 1)^2} > 0$  donc g est croissante sur

$$-\infty; \frac{1}{4} \cup \frac{1}{4}; +\infty$$

 $h'(x) = e^x + xe^x = (x + 1)e^x$  donc le tableau est :



3.



## 3. Manipuler des expressions algébriques

**1. a)** 
$$-6x^3 + 5x^2 - 2$$

**b)** 
$$e^{5x} + e^{x+2} + e^{-x}$$

**c)** 
$$e^{4x} + 2e^{2x}\sqrt{2x-1} + 2x - 1$$

**2. a)** 
$$2x(4x^2 + 3x - 6)$$

**b)** 
$$e^2x[e^4x - 4e^{2x} + e^{7x}]$$

**c)** 
$$[e^x - 7x][e^x + 7x]$$

3. a) 
$$\frac{(2-x)(\sqrt{x}+4)}{x-16}$$

**b)** 
$$\frac{\sqrt{x}(\sqrt{2x+1}+\sqrt{3})}{2x+2}$$

## 4. Encadrer des fonctions

- 1.  $f(x) (2x + 1) = x^2 4x + 3 = (x 1)(x 3)$  donc la courbe est en-dessous de la droite sur [1; 3] et au dessus partout ailleurs.
- **2. a)** x est positif et il n'y a que des additions de nombres positifs.

**b)** 2x < 3x et 3 < 4 donc par somme d'inégalités : 2x + 3 < 3x + 4.

**3. a)** 
$$x - 1 \le f(x) \le x + 1$$
 **b)**  $-x \le f(x) \le x$ 

**b)** 
$$-x \leqslant f(x) \leqslant x$$

**c)** 
$$0 \le f(x) \le \frac{1}{x^2 + 1}$$

#### **Activités** p. 50-51

## 1 Découvrir la notion d'asymptotes et de limites de fonctions

- Durée estimée : 35 min
- Objectif : Découvrir les notions de limite et d'asymptote.

## A. Observations graphiques

- 1. Tracés sur GeoGebra.
- 2. a) À leurs extrémités, les courbes sont proches de l'axe des abscisses.
- **b)** Pour la courbe de h, on ne peut pas affirmer la même chose.
- **3.**Les asymptotes sont : v = 0 et x = 0.

## B. Observations numériques

- 1. a) b) c) Tableau de valeurs
- **2.** Une limite finie pour f et g qui vaut 0 et une limite infinie pour h qui vaut  $+\infty$ .

## 2 Découvrir la notion de limite en un point

- Durée estimée : 20 min
- Objectif : Découvrir la notion de limite en une valeur finie.
- 1. Non elles ne sont pas définies en 0.
- 2. 3. a) b) GeoGebra
- c) Pour f les images se rapprochent de moins l'infini et pour q elles se rapprochent de 15.
- 4. a) GeoGebra
- **b)** Pour f les images se rapprochent de plus l'infini et pour q elles se rapprochent de 15.

## 3 Effectuer des opérations sur les limites

- Durée estimée : 30 min
- Objectif : Découvrir les difficultés dans les opérations portant sur les limites, manupilant les notions d'infini.
- **1.**  $\lim f(x) = +\infty \text{ et } \lim f(x) = 0.$

$$\lim_{x\to 0} g(x) = +\infty \text{ et } \lim_{x\to +\infty} g(x) = 0.$$

$$\lim_{x \to 0} h(x) = 0 \text{ et } \lim_{x \to +\infty} h(x) = +\infty.$$

$$\lim_{x\to 0} k(x) = 0 \text{ et } \lim_{x\to +\infty} k(x) = +\infty.$$

**2. a)** 
$$\lim f(x) + h(x) = +\infty$$

**b)** 
$$\lim_{x \to -\infty} g(x) + k(x) = +\infty$$

c) 
$$\lim_{x \to \infty} k(x) + h(x) = +\infty$$

**d)** 
$$\lim_{x \to -\infty} h(x) + k(x) = +\infty$$

**e)** 
$$\lim_{x \to 0} f(x) + g(x) = +\infty$$

**f)** 
$$\lim_{x \to -\infty} f(x) + h(x) = -\infty$$

**g)** 
$$\lim_{x \to +\infty} f(x) + h(x) = +\infty$$

**h)** 
$$\lim_{x \to -\infty} f(x) + g(x) = 0$$

**3. a)** 
$$\lim_{x \to +\infty} f(x) \times h(x) = 0$$

**b)** 
$$\lim_{x \to -\infty} f(x) \times k(x) = 1$$

c) 
$$\lim_{x\to 0} g(x) \times k(x) = 0$$

**d)** 
$$\lim_{x \to +\infty} f(x) \times k(x) = 1$$

e) 
$$\lim_{x \to -\infty} k(x) \times h(x) = -\infty$$

f) 
$$\lim_{x \to -\infty} g(x) \times h(x) = 1$$

**g)** 
$$\lim_{x\to 0} f(x) \times h(x) = +\infty$$

**h)** 
$$\lim_{x \to +\infty} g(x) \times k(x) = +\infty$$

## 4 Déterminer des limites de fonctions rationnelles

- Durée estimée : 30 min
- Objectif : Étudier les limites de fractions ration-
- 1. Le calcul de la limite conduit vers infini sur infini pour le quotient et au numérateur aussi : infini moins infini.

$$2. f(x) = \frac{x^3 \left(2 - \frac{1}{x} + \frac{2}{x^2} - \frac{3}{x^3}\right)}{x^2 \left(1 + \frac{4}{x^2}\right)} = \frac{x \left(2 - \frac{1}{x} + \frac{2}{x^2} - \frac{3}{x^3}\right)}{\left(1 + \frac{4}{x^2}\right)}$$

3. 
$$\lim_{x \to +\infty} \left( 2 - \frac{1}{x} + \frac{2}{x^2} - \frac{3}{x^3} \right) = 2$$
,  $\lim_{x \to +\infty} \left( 1 + \frac{4}{x^2} \right) = 1$ 

et  $\lim x = +\infty$  donc par produit et quotient,

$$\lim_{x \to \infty} f(x) = +\infty.$$

#### 5 Encadrer et comparer des fonctions

- Durée estimée: 30 min
- Objectif : Utiliser les comparaisons de fonctions pour trouver des limites.

## A. Utilisation des outils acquis et des observations graphiques

- **1.** Non, on ne peut pas les déterminer à partir d'opérations sur le slimites, à cause du sinus.
- **2.**  $\lim_{x \to +\infty} f(x) = +\infty$  et  $\lim_{x \to +\infty} g(x) = 0$ .

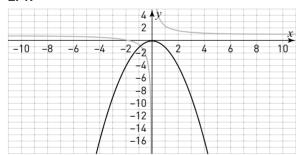
## B. Démonstration algébrique

- **1. a)**  $-1 \le \sin(x) \le 1$  d'où  $x \le f(x) \le x + 20$ .
- **b)** De même  $-1 \le \sin(10x) \le 1$  d'où  $-\frac{1}{x} \le g(x) \le \frac{1}{x}$ .
- **2. a)**  $\lim_{x\to +\infty} x = +\infty$
- **b)**  $\lim_{x \to +\infty} \frac{1}{x} = 0$
- c)  $\lim_{x \to +\infty} -\frac{1}{x} = 0$
- 3.  $\lim_{x\to +\infty} f(x) = +\infty$  et  $\lim_{x\to +\infty} g(x) = 0$ .

# À vous de jouer

n 53-61

### 1.1.



- 2. a) À partir de 4 et avant -4.
- **b)** À partir de 3 et avant -3.
- 3. On conjecture :

 $\lim_{x\to -\infty} f(x) = -\infty = \lim_{x\to +\infty} f(x) \text{ et } \lim_{x\to -\infty} g(x) = 1 = \lim_{x\to +\infty} g(x).$ 

- **2.1. 2. a)** À partir de 7 et avant -1.
- b) À partir de 0,5.
- 3. On conjecture:

 $\lim_{x \to \infty} f(x) = -\infty = \lim_{x \to \infty} f(x) \text{ et } \lim_{x \to \infty} g(x) = -2 = \lim_{x \to \infty} g(x).$ 

- **3.**  $\lim_{x\to 0} f(x) = -\infty$  et  $\lim_{x\to -1} g(x) = +\infty$ .
- **4.** On conjecture  $\lim_{x\to 0} f(x) = +\infty$  et  $\lim_{x\to \frac{1}{2}} g(x) = \pm \infty$ .

- **5.** On conjecture une asymptote horizontale et une asymptote verticale.
- **6.** On conjecture une asymptote verticale d'équation x = 0.
- **7. a)**  $\lim_{x \to \infty} f(x) = +\infty$
- **b)**  $\lim_{x \to \infty} f(x) = 0$
- c)  $\lim_{x\to 0^+} f(x) = +\infty$
- **d)**  $\lim_{x \to +\infty} f(x) = +\infty$
- e)  $\lim_{x\to 1} f(x) = -\infty$
- **f)**  $\lim_{x \to -\infty} f(x) = -\infty$
- **8. a)**  $\lim_{x \to -\infty} f(x) = +\infty$
- **b)**  $\lim_{x\to +\infty} f(x) = 0$
- $c) \lim_{x \to 2^+} f(x) = +\infty$
- **d)**  $\lim_{x\to 1^-} f(x) = -\infty$
- **e)**  $\lim_{x \to +\infty} f(x) = -\infty$
- **f)**  $\lim_{x \to 0} f(x) = 0$
- **9. a)**  $\lim_{x \to -\infty} f(x) / g(x) = 0$
- **b)**  $\lim_{x \to \infty} f(x) / g(x) = \pm \infty$
- c)  $\lim_{x \to \infty} f(x) \times g(x) = -\infty$
- **d)**  $\lim_{x \to -\infty} f(x) \times g(x) = +\infty$
- **10.** 1. a)  $\lim_{x \to 0^+} f(x) = +\infty$
- **b)**  $\lim_{x \to 0^{-}} f(x) = +\infty$
- c)  $\lim_{x \to +\infty} f(x) = +\infty$
- **d)**  $\lim_{x \to \infty} f(x) = -\infty$
- **2. a)**  $\lim_{x \to +\infty} g(x) = -\infty$
- **b)**  $\lim_{x \to \infty} g(x) = +\infty$
- **3. a)**  $\lim_{x \to 1^+} h(x) = -\infty$
- **b)**  $\lim_{x \to 1^{-}} h(x) = +\infty$
- c)  $\lim_{x \to -1^+} h(x) = +\infty$
- **d)**  $\lim_{x \to -1^-} h(x) = -\infty$
- e)  $\lim_{x \to \infty} h(x) = -\infty$
- $f) \lim_{x \to -\infty} h(x) = -\infty$
- **4. a)**  $\lim_{x \to 2^+} k(x) = -\infty$
- **b)**  $\lim_{x \to \infty} k(x) = -\infty$
- **c)**  $\lim_{x \to +\infty} k(x) = 0$
- **d)**  $\lim_{x \to \infty} k(x) = 0$
- **11.** a)  $f(x) = x^2$  et g(x) = -x
- **b)**  $f(x) = x^2$  et  $g(x) = \frac{1}{x}$
- **c)** f(x) = x 2 et g(x) = x 2
- **d)**  $f(x) = -\frac{1}{x^2}$  et  $g(x) = -\frac{1}{x^4}$

**12. a)** 
$$\lim_{x \to +\infty} f(x) = +\infty$$
 **b)**  $\lim_{x \to -\infty} f(x) = 0$ 

**b)** 
$$\lim_{x \to -\infty} f(x) = 0$$

**c)** 
$$\lim f(x) = 0$$

**d)** 
$$\lim_{x \to -\infty} f(x) = 0$$

**13.** a) 
$$f(x) \le 1 - \sqrt{x} \lim_{x \to +\infty} f(x) = -\infty$$

**b)** 
$$\frac{3}{2e^x} \le f(x)$$
 et  $\lim_{x \to -\infty} f(x) = +\infty$ 

c) 
$$\frac{2}{\sqrt{x}} \le f(x) \le \frac{4}{\sqrt{x}}$$
 et  $\lim_{x \to +\infty} f(x) = 0$ 

**d)** 
$$0 \le f(x) \le \frac{1}{x+3} \text{ et } \lim_{x \to +\infty} f(x) = 0$$

**14.** a) 
$$\lim_{x \to -\infty} f(x) = +\infty$$
 b)  $\lim_{x \to -1^+} f(x) = 1$ 

**b)** 
$$\lim_{x \to -1^+} f(x) = 1$$

**15.** a) 
$$\lim_{x \to -\infty} f(x) = 1$$
 b)  $\lim_{x \to 1^+} f(x) = +\infty$ 

**b)** 
$$\lim_{x \to 1^+} f(x) = +\infty$$

**16.** a) 
$$f(x) = 2x^5 \left( 1 + \frac{1}{2x^3} \right)$$
 et  $\lim_{x \to -\infty} f(x) = -\infty$ 

**b)** 
$$f(x) = \frac{2 - \frac{1}{x}}{3 + \frac{2}{x}}$$
 et  $\lim_{x \to +\infty} f(x) = \frac{2}{3}$ 

**c)** 
$$f(x) = -3x^2 \left(1 - \frac{5}{3x}\right)$$
 et  $\lim_{x \to +\infty} f(x) = -\infty$ .

**d)** 
$$f(x) = \frac{1 - \frac{1}{x}}{x \left(1 + \frac{3}{x^2}\right)}$$
 et  $\lim_{x \to -\infty} f(x) = 0$ .

**17.** a) 
$$f(x) = -x^5 \left( -\frac{1}{x} + 1 - \frac{1}{x^6} \right)$$
 et  $\lim_{x \to +\infty} f(x) = -\infty$ .

**b)** 
$$f(x) = \frac{-3x^2 \left(-\frac{1}{3x^2} + 1\right)}{-4x^3 \left(-\frac{1}{4x^2} + 1\right)} = \frac{3\left(-\frac{1}{3x^2} + 1\right)}{4x \left(-\frac{1}{4x^2} + 1\right)}$$

et  $\lim f(x) = 0$ .

**c)** 
$$f(x) = -3x^3 \left( 1 - \frac{1}{3x^2} + \frac{1}{3x^3} \right)$$
 et  $\lim_{x \to -\infty} f(x) = +\infty$ .

**d)** 
$$f(x) = \frac{x^2 \left(1 + \frac{3}{x} - \frac{1}{x^2}\right)}{-x \left(-\frac{2}{x} + 1\right)} = \frac{x \left(1 + \frac{3}{x} - \frac{1}{x^2}\right)}{-\left(-\frac{2}{x} + 1\right)}$$

et  $\lim f(x) = -\infty$ .

**18. 1.** 
$$\lim_{x \to -\infty} 3x^2 = +\infty$$
 et  $\lim_{x \to -\infty} -2x + 1 = +\infty$ 

donc  $\lim f(x) = +\infty$ .

2.  $\lim_{x \to \infty} 3x^2 = +\infty$  et  $\lim_{x \to \infty} -2x + 1 = -\infty$  indéterminée.

3. 
$$f(x) = 3x^2 \left( 1 - \frac{2}{3x} + \frac{1}{3x^2} \right)$$
 et  $\lim_{x \to +\infty} f(x) = +\infty$ .

**19.** 1.  $\lim_{x \to +\infty} x^2 + 3x = +\infty$  et  $\lim_{x \to +\infty} x + 1 = +\infty$  indéterminée.

2. 
$$f(x) = \frac{x^2 \left(1 + \frac{3}{x}\right)}{x \left(1 + \frac{1}{x}\right)} = \frac{x \left(1 + \frac{3}{x}\right)}{\left(1 + \frac{1}{x}\right)} \text{ et } \lim_{x \to +\infty} f(x) = +\infty,$$

 $\lim f(x) = -\infty.$ 

**20.** a) 
$$f(x) = \frac{1}{\sqrt{x+1} + \sqrt{x}}$$
 et  $\lim_{x \to +\infty} f(x) = 0$ .

**b)** 
$$f(x) = \frac{5}{\sqrt{x^2 - 1} + \sqrt{x^2 - 6}}$$
 et  $\lim_{x \to +\infty} f(x) = 0$ .

c) 
$$f(x) = \frac{-x - x^2}{\sqrt{1 - x} + \sqrt{x^2 + 1}} = \frac{x\left(\frac{1}{x} + 1\right)}{\sqrt{\frac{1}{x^2} - \frac{1}{x}} + \sqrt{1 + \frac{1}{x^2}}}$$

et  $\lim f(x) = -\infty$ .

**d)** 
$$f(x) = \frac{-7}{\sqrt{-3 - x} + \sqrt{4 - x}}$$
 et  $\lim_{x \to -\infty} f(x) = 0$ .

**21.** a) 
$$f(x) = \frac{-7}{\sqrt{3-x} + \sqrt{10-x}}$$
 et  $\lim_{x \to -\infty} f(x) = 0$ .

**b)** 
$$f(x) = \frac{-3}{\sqrt{x^2 + x + 3} + \sqrt{x^2 + x + 6}}$$
 et  $\lim_{x \to +\infty} f(x) = 0$ .

$$c) f(x) = \frac{x - 7 - x^2}{\sqrt{x - 4} + \sqrt{3 + x^2}}$$

$$= \frac{-x^2 \left(-\frac{1}{x} + \frac{7}{x^2} + 1\right)}{x \left(\sqrt{\frac{1}{x}} - \frac{4}{x^2} + \sqrt{\frac{3}{x^2} + 1}\right)} = \frac{-x \left(-\frac{1}{x} + \frac{7}{x^2} + 1\right)}{\sqrt{\frac{1}{x}} - \frac{4}{x^2} + \sqrt{\frac{3}{x^2} + 1}}$$

et  $\lim_{x \to +\infty} f(x) = -\infty$ .

**d)** 
$$f(x) = \frac{-x - x^2}{\sqrt{2 - x} + \sqrt{2 + x^2}}$$

$$= \frac{-x^2 \left(\frac{1}{x} + 1\right)}{-x \left(\sqrt{\frac{2}{x^2} - \frac{1}{x}} + \sqrt{\frac{2}{x^2} + 1}\right)} = \frac{x \left(\frac{1}{x} + 1\right)}{\sqrt{\frac{2}{x^2} - \frac{1}{x}} + \sqrt{\frac{2}{x^2} + 1}}$$

et  $\lim_{x \to -\infty} f(x) = -\infty$ .

22. 1. Infini moins infini.

**2.** 
$$f(x) = \frac{1}{\sqrt{2-x} + \sqrt{1-x}}$$

**3.** 
$$\lim_{x \to \infty} f(x) = 0$$

23. 1. Les trois!

2. 
$$f(x) = \frac{x - x^2 - 1}{\sqrt{x} + \sqrt{x^2 + 1}} = \frac{-x\left(-\frac{1}{x} + 1 + \frac{1}{x^2}\right)}{\sqrt{\frac{1}{x}} + \sqrt{1 + \frac{1}{x^2}}}$$

$$g(x) = \frac{x^2 - x - 2}{\sqrt{x^2 + 3} + \sqrt{5 + x}} = \frac{x\left(1 - \frac{1}{x} - \frac{2}{x^2}\right)}{\sqrt{1 + \frac{3}{x^2} + \sqrt{\frac{5}{x^2} + \frac{1}{x}}}}$$

$$h(x) = \frac{x^2 + 2}{\sqrt{x^2 + x} + \sqrt{-2 + x}} = \frac{x\left(1 + \frac{2}{x^2}\right)}{\sqrt{1 + \frac{1}{x}} + \sqrt{-\frac{2}{x^2} + \frac{1}{x}}}$$

 $3. \lim_{x \to +\infty} f(x) = -\infty,$ 

$$\lim_{x \to +\infty} g(x) = +\infty \text{ et } \lim_{x \to +\infty} h(x) = +\infty$$

# Exercices apprendre à démontrer p. 62

#### Pour s'entraîner

 $\lim_{x\to -\infty} f(x) = +\infty$  donc par définition d'une limite infi-

nie à l'infini on a : pour tout réel A il existe un réel m tel que si x < m alors f(x) > A.

Or  $g(x) \ge f(x)$  donc par conséquent pour tout réel A il existe un réel m tel que si x < m alors g(x) > A ce qui signifie que :  $\lim_{x \to \infty} g(x) = +\infty$ .

# Exercices calculs et automatismes p. 63

## 24. Lecture graphique

1. b) 2. d)

## 25. Opérations sur les limites

1. cl et dl 2. al. bl et cl

#### 26. Limites diverses

- 1. Faux
- 2. Vrai
- 3. Faux
- 4. Vrai

#### 27. Formes indéterminées

a) et d)

#### 28. Inégalités

1. c) 2. b) 3. a) et d)

#### 29. Encadrement

1. a) 2. d) 3. b)

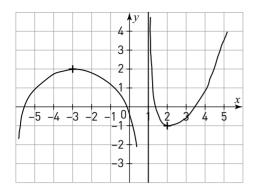
#### 30. Comparaison

1. d) 2. d) 3. c)

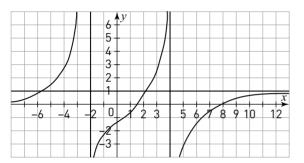
## **Exercices d'application** p. 64-66

#### Courbe représentative

**31.** On trace à la main en plaçant les extremums et l'asymptote verticale.



32. On trace à la main en plaçant les asymptotes verticales et horizontales.



#### Limites à l'infini

**33.** 
$$\lim_{x \to -\infty} f(x) = +\infty = \lim_{x \to +\infty} f(x)$$

**34.** 
$$\lim f(x) = 4 = \lim f(x)$$

**35.** a) 
$$\lim_{x \to \infty} f(x) = +\infty$$

**b)** 
$$\lim_{x \to -\infty} f(x) = \frac{2}{3}$$

**c)** 
$$\lim_{x \to 0} f(x) = 0$$

**d)** 
$$\lim_{x \to +\infty} f(x) = +\infty$$

## Limite en une valeur réelle

**36.** 
$$\lim_{x \to -2} f(x) = +\infty$$

**37.** Non.

**38. a)** 
$$\lim_{x \to 0^+} f(x) = +\infty$$
 **b)**  $\lim_{x \to 0^+} f(x) = 2$ 

**b)** 
$$\lim_{x \to 1^+} f(x) = 2$$

c) 
$$\lim_{x \to 3^{-}} f(x) = \frac{e^{3}}{3}$$

**d)** 
$$\lim_{x\to 0^-} f(x) = 0$$

#### Déterminer des asymptotes

**39.** La courbe  $\mathscr{C}_{f}$  semble avoir une asymptote horizontale d'équation y = 1 et une asymptote verticale d'équation x = 0.

La courbe  $\mathscr{C}_q$  semble ne pas avoir d'asymptote. La courbe  $\mathscr{C}_b$  semble avoir une asymptote verticale d'équation x = 1.

La courbe  $\mathscr{C}_{\iota}$  semble ne pas avoir d'asymptote.

**40.** a) 
$$\lim_{x \to 3^+} f(x) = +\infty$$
,  $\lim_{x \to 3^-} f(x) = -\infty$ ,  $\lim_{x \to -3^+} f(x) = +\infty$ 

et 
$$\lim_{x \to \infty} f(x) = -\infty$$
.

b) 
$$\lim_{x\to 0} f(x) = 0$$
,  $\lim_{x\to +\infty} f(x) = +\infty$  et  $\lim_{x\to -\infty} f(x) = -\infty$ .

**41.** Deux asymptotes verticales d'équations x = 0et x = 2 et deux asymptotes horizontales d'équations y = -2 et y = 1.

## Opérations sur les limites

**42.** a) 
$$\lim f(x) = 1$$

**b)** 
$$\lim f(x) = +\infty$$

c) 
$$\lim f(x) = +\infty$$

**d)** 
$$\lim_{x \to 0} f(x) = 0$$

**43.** a) 
$$\lim_{x \to +\infty} f(x) = 0$$

**b)** 
$$\lim_{x \to \infty} f(x) = +\infty$$

c) 
$$\lim_{x \to +\infty} f(x) = +\infty$$

**d)** 
$$\lim_{x \to +\infty} f(x) = -\infty$$

**44. 1. a)** 
$$\lim_{x \to -\infty} f(x) = +\infty = \lim_{x \to +\infty} f(x)$$

**b)** 
$$\lim g(x) = -\infty$$
 et  $\lim g(x) = -\infty$ .

**c)** 
$$\lim_{x \to \infty} h(x) = 0$$
 et  $\lim_{x \to \infty} h(x) = 0$ .

**d)** 
$$\lim_{x \to -\infty} k(x) = -\infty$$
 et  $\lim_{x \to +\infty} k(x) = 0$ .

**2.** Pas d'asymptotes pour f et g. Pour h une asymptote horizontale d'équation y = 0 et une verticale d'équation x = 1. Pour k une asymptote horizontale d'équation y = 0 et une verticale d'équation x = 0.

## Opérations sur les limites en une valeur

**45.** a) 
$$\lim_{x \to 0} f(x) = +\infty$$

**b)** 
$$\lim_{x \to 1^{-}} f(x) = \frac{1}{4}$$

c) 
$$\lim_{x\to 2} f(x) = 8e^2$$

**d)** 
$$\lim_{x\to 2^-} f(x) = -\infty$$

**46.** a) 
$$\lim_{x \to 1^+} f(x) = +\infty$$
,  $\lim_{x \to 1^-} f(x) = -\infty$ 

**b)** 
$$\lim_{x \to 2^{-}} g(x) = -\infty$$
,  $\lim_{x \to 2^{+}} g(x) = +\infty$ 

**c)**  $\lim_{x \to -1^-} h(x) = -\infty$ ,  $\lim_{x \to -1^+} h(x) = -\infty$ 

**d)**  $\lim_{x\to 0^-} k(x) = -\infty$ ,  $\lim_{x\to -0^+} k(x) = +\infty$ 

## Comparaison de fonctions

**47. a)**  $\lim f(x) = +\infty$ 

**b)**  $\lim_{x \to +\infty} f(x) = 0$ 

c) Impossible.

**d)**  $\lim_{x \to 0^+} f(x) = 1$ 

**48. 1. a)**  $f(x) \ge 2x - 1$ 

**b)**  $g(x) \ge x - 1$ 

2. Donc leur limite est +∞.

**49. 1.** a)  $f(x) \ge \frac{1}{x}$ 

**b)**  $g(x) \ge \frac{1}{x}$ 

**2.** Donc leur limite est  $+\infty$ .

**3.**  $f(x) \le \frac{2}{x}$  et  $g(x) \le \frac{1}{x}$ , donc leur limite est  $-\infty$ .

**50. 1. a)**  $-\frac{1}{x+1} \le f(x) \le \frac{1}{x+1}$ 

**b)**  $1 \le g(x) \le \frac{x+1}{x}$ 

**c)**  $-\frac{2}{x^2} \le h(x) \le \frac{2}{x^2}$ 

**2.** On en déduit que :  $\lim_{x \to \infty} f(x) = 0$ ,  $\lim_{x \to \infty} g(x) = 1$ 

et  $\lim_{x \to +\infty} h(x) = 0$ .

## Croissances comparées

**51.** a)  $\lim_{x \to +\infty} f(x) = 0$ 

**b)**  $\lim_{x\to +\infty} f(x) = 0$ 

**c)**  $\lim f(x) = 0$ 

**d)**  $\lim_{x \to +\infty} f(x) = 0$ 

#### Composition de limites

**52. 1. a)**  $u(x) = 2x^2 + 3$  et  $v(x) = \sqrt{x}$ .

**b)** u(x) = -2x - 1 et  $v(x) = e^x$ .

**c)**  $u(x) = \frac{1}{x}$  et  $v(x) = \cos(x)$ .

**d)**  $u(x) = e^{-x}$  et  $v(x) = \sqrt{x}$ .

**2. a)**  $\lim_{x \to -\infty} f(x) = +\infty$  et  $\lim_{x \to +\infty} f(x) = +\infty$ .

**b)**  $\lim_{x \to -\infty} f(x) = +\infty$  et  $\lim_{x \to +\infty} f(x) = 0$ .

c)  $\lim_{x \to -\infty} f(x) = 1$  et  $\lim_{x \to +\infty} f(x) = 1$ .

**d)**  $\lim_{x \to -\infty} f(x) = +\infty$  et  $\lim_{x \to +\infty} f(x) = 0$ .

**53.** a)  $\lim_{x\to +\infty} f(x) = +\infty$ 

**b)**  $\lim_{x \to -\infty} g(x) = 0$ 

c)  $\lim_{x\to 0^+} h(x) = +\infty$  et  $\lim_{x\to 0^-} h(x) = 0$ .

**d)**  $\lim_{x \to 3^+} k(x) = 0$  et  $\lim_{x \to 3^-} k(x) = +\infty$ .

**54. a)**  $\lim_{x \to a} f(x) = e^{-1} + 2$ 

**b)**  $\lim_{x \to \infty} g(x) = 0$ 

c)  $\lim_{x \to 1^+} h(x) = +\infty$ 

**d)**  $\lim_{x\to 0^+} k(x) = 0$ 

**55. 1. a)**  $f(x) = e^{-3x-1}$ 

**b)**  $f(x) = \sqrt{\frac{1}{4 + x^2}}$ 

**2.**  $\lim_{n\to +\infty} u_n = 0$  dans les deux cas.

**56. a)**  $\lim_{n\to +\infty} u_n = 0$ 

**b)**  $\lim_{n\to+\infty} v_n = 0$ 

c)  $\lim_{n\to+\infty} w_n = 0$ 

**d)**  $\lim_{n\to+\infty} t_n = 1$ 

#### Formes indéterminées

**57. 1.** Forme « 0/0 ».

**2.**  $f(x) = \frac{(x-1)(x-2)}{(1-x)^2} = \frac{x-2}{x-1}$ .

**3.**  $\lim_{x \to \uparrow^-} f(x) = +\infty$  et  $\lim_{x \to \uparrow^+} f(x) = -\infty$ .

**58. 1.** C'est de la forme « 0/0 ».

**2.**  $-3x^2 + 5x + 2 = (x - 2)(-3x - 1)$  et alors f(x) = -3x - 1 pour tout x différent de 2.

**3.**  $\lim_{x\to 2^-} f(x) = -7 = \lim_{x\to 2^+} f(x)$ 

**59. 1.** C'est de la forme « 0/0 ».

**2.**  $-x^2 - x + 6 = (x + 3)(-x + 2)$  et  $f(x) = \frac{-x + 2}{x + 3}$ .

**3.**  $\lim_{x \to -3^-} f(x) = -\infty$  et  $\lim_{x \to -3^+} f(x) = +\infty$ .

- **60. 1.** En  $-\infty$  aucune des fonctions n'a une limite indéterminée.
- 2. En +∞ elles sont toutes indéterminées.

**3.** 
$$f(x) = -x^2 \left( 1 - \frac{4}{x} + \frac{5}{x^2} \right), \ g(x) = x^3 \left( 1 - \frac{1}{x} + \frac{3}{x^2} - \frac{1}{x^3} \right)$$

et 
$$h(x) = -4x^4 - \frac{1}{2x^3} + 1 - \frac{1}{4x^4}$$
.

$$4. \lim_{x \to -\infty} f(x) = -\infty = \lim_{x \to +\infty} f(x)$$

$$\lim_{x\to -\infty} g(x) = -\infty \text{ et } \lim_{x\to -\infty} g(x) = +\infty.$$

$$\lim_{x \to -\infty} h(x) = -\infty = \lim_{x \to +\infty} h(x)$$

- **61.** 1. En -∞ elles sont toutes indéterminées.
- 2. En +∞ elles sont toutes indéterminées.

3. 
$$f(x) = \frac{1 - \frac{4}{x}}{x \left(1 + \frac{3}{x^2}\right)}$$
,  $g(x) = \frac{x \left(1 + \frac{5}{x^2}\right)}{\frac{3}{x} - 1}$ 

et 
$$h(x) = \frac{-\left(-\frac{2}{x^2} - \frac{1}{x} + 1\right)}{\frac{3}{x^2} + 1}$$
.

**4.** 
$$\lim_{x \to -\infty} f(x) = 0 = \lim_{x \to +\infty} f(x)$$

$$\lim_{x\to -\infty} g(x) = -\infty \text{ et } \lim_{x\to +\infty} g(x) = +\infty.$$

$$\lim_{x \to -\infty} h(x) = -1 = \lim_{x \to +\infty} h(x)$$

- **62. 1.** De la forme  $\infty \infty$ .
- **2.**  $f(x) = \frac{7}{\sqrt{x+3} + \sqrt{x-4}}$
- **3.**  $\lim_{x \to \infty} f(x) = 0$

## Exercices d'entraînement

## Utiliser la définition de limite

- **63. 1.** On conjecture  $\lim_{x\to -\infty} f(x) = +\infty$  et  $\lim_{x\to +\infty} f(x) = -\infty$ .
- **2.** Pour A = 2003 alors pour x < -2000 on a f(x) > 2003 donc  $\lim_{x \to -\infty} f(x) = +\infty$ .

Et pour A = -1 997alors pour x > 2 000 on a f(x) < -1 997 donc  $\lim_{x \to +\infty} f(x) = -\infty$ .

- **64. a)** Pour A = 2003 alors pour x > 1000 on a f(x) > 2003 donc  $\lim_{x \to 0} f(x) = +\infty$ .
- **b)** Pour ]0,99; 1,01[ alors pour x > 100 on a 0,99 < f(x) < 1,01 donc  $\lim_{x \to +\infty} f(x) = 1$ .
- **c)** Pour A = 1001 alors pour x < -100 on a f(x) > 1001 donc  $\lim_{x \to -\infty} f(x) = +\infty$ .
- **d)** Pour ]-2,01; -1,99[ alors pour x < -100 on a -2,01 < f(x) < -1,99 donc  $\lim_{x \to -\infty} f(x) = -2$ .
- **65.** Pour A = 100 alors pour x < -100 on a f(x) > 100 donc  $\lim f(x) = +\infty$ .

Et pour A = -100 alors pour x > 100 on a f(x) > 100 donc  $\lim_{x \to +\infty} f(x) = +\infty$ .

**66.** Pas limite en  $+\infty$  car trop d'oscillations et en  $-\infty$  la limite semble être 0.

Donc une asymptote d'équation y = 0.

- **67. 1.** On conjecture  $\lim_{x \to \frac{1}{2}^{-}} f(x) = +\infty$  et  $\lim_{x \to \frac{1}{2}^{+}} f(x) = -\infty$ .
- **2.** Pour A = 50 alors pour 0,49 < x < 0,5 alors f(x) > 50 et donc  $\lim_{x \to \infty} f(x) = +\infty$ .

Pour 
$$A = 50$$
 alors pour  $0.5 < x < 0.51$  alors  $f(x) < -50$  et donc  $\lim_{x \to 0} f(x) = -\infty$ .

- **68. a)** Pour A = -100 alors pour 0,99 < x < 1 alors f(x) < -100 et donc  $\lim_{x \to 0} f(x) = -\infty$ .
- **b)** Pour ]0; 0,01[ alors pour 0 < x < 0,0001 on a 0 < f(x) < 0,01 donc  $\lim_{x \to 0^+} f(x) = 0$
- **c)** Pour  $A = 10\,000$  alors pour -2,01 < x < -2 alors  $f(x) > 10\,000$  et donc  $\lim_{x \to -2^-} f(x) = +\infty$
- **d)** Pour  $A = -10\,000$  alors pour 1 < x < 1,01 alors  $f(x) < -10\,000$  et donc  $\lim_{x \to 1^+} f(x) = -\infty$

## Opérations sur les limites

**69.** a) 
$$\lim_{x\to -\infty} f(x) = -\infty$$
 et  $\lim_{x\to +\infty} f(x) = +\infty$ .

**b)** 
$$\lim_{x\to -\infty} g(x) = -1$$
 et  $\lim_{x\to +\infty} g(x) = -\infty$  donc une asymptote d'équation  $y = -1$ .

c) 
$$\lim_{x\to -\infty} h(x) = +\infty$$
 et  $\lim_{x\to +\infty} h(x) = +\infty$ .

**d)** 
$$\lim_{x \to -\infty} k(x) = 0$$
 et  $\lim_{x \to +\infty} k(x) = +\infty$  donc une asymptote d'équation  $y = 0$ .

**70.** 1. 
$$f(-x) = e^{-x} + e^x = f(x)$$

**2.** 
$$\lim_{x \to 0} f(x) = 0$$

$$3. \lim_{x \to -\infty} f(x) = 0$$

**71.** a) 
$$\lim_{x \to -\infty} f(x) = -\infty$$
 et  $\lim_{x \to +\infty} f(x) = +\infty$ .

**b)** 
$$\lim_{x \to -\infty} g(x) = +\infty$$
 et  $\lim_{x \to +\infty} g(x) = +\infty$ .

c) 
$$\lim_{x\to -\infty} h(x) = 0$$
 et  $\lim_{x\to +\infty} h(x) = +\infty$  donc une asymptote d'équation  $y = 0$ .

**d)** 
$$\lim_{x \to -\infty} k(x) = -\infty$$
 et  $\lim_{x \to +\infty} k(x) = +\infty$ .

**72. a)** 
$$\lim_{x \to 1^-} f(x) = -\frac{1}{3} = \lim_{x \to 1^+} f(x)$$

**b)** 
$$\lim_{x\to 0^-} g(x) = -1 = \lim_{x\to 0^+} g(x)$$

c) 
$$\lim_{x \to -2^-} h(x) = 12 = \lim_{x \to -2^+} h(x)$$

**d)** 
$$\lim_{x \to -1^-} k(x) = -\frac{1}{2} = \lim_{x \to -1^+} k(x)$$

**73.** 
$$\lim_{x\to\pm\infty} f(x) = 1$$
 et on en déduit une asymptote horizontale d'équation  $y = 1$ .

**74.** 
$$\lim_{x \to \pm \infty} f(x) = +\infty$$
 et  $\lim_{x \to -\infty} f(x) = 0$ .

**75.** 
$$\lim_{x\to\pm\infty} g(x) = +\infty$$
 et  $\lim_{x\to-\infty} g(x) = -\infty$ .

**76. a)** 
$$\lim_{x \to -4^+} f(x) = -\infty$$
 et  $\lim_{x \to -4^+} f(x) = +\infty$  donc une asymptote verticale d'équation  $x = -4$ .

**b)** 
$$\lim_{x \to 4^-} g(x) = -\frac{e^4}{4} = \lim_{x \to 4^+} g(x)$$

**c)** 
$$\lim_{x\to 1^-} h(x) = +\infty = \lim_{x\to 1^+} h(x)$$
 donc une asymptote verticale d'équation  $x = 1$ .

**d)** 
$$\lim_{x\to 1^-} k(x) = -\infty$$
 et  $\lim_{x\to 1^+} k(x) = +\infty$  donc une asymptote verticale d'équation  $x = 1$ .

**77.** f(0) n'existe pas donc la courbe 2 est celle représentant la fonction f.

### Formes indéterminées

**78. 1. a)** 
$$x^4 \left( 1 - \frac{5}{x} + \frac{1}{x^3} - \frac{1}{x^4} \right)$$

**b)** 
$$-5x^4 \left( 1 - \frac{3}{5x} + \frac{1}{5x^3} \right)$$

**c)** 
$$e^{2x}(1 - e^{-x})$$

**d)** 
$$e^{4x}[1+e^{-2x+1}-e^{-3x}-3e^{-4x}]$$

**2.** 
$$\lim_{x \to -\infty} a(x) = +\infty$$
 et  $\lim_{x \to +\infty} a(x) = +\infty$ .

$$\lim_{x \to -\infty} b(x) = -\infty \text{ et } \lim_{x \to +\infty} b(x) = -\infty.$$

$$\lim_{x \to -\infty} c(x) = 0 \text{ et } \lim_{x \to +\infty} c(x) = +\infty.$$

$$\lim_{x \to -\infty} d(x) = -3 \text{ et } \lim_{x \to +\infty} d(x) = +\infty.$$

**79. 1. a)** 
$$\frac{2-\frac{1}{x}}{3+\frac{2}{x}}$$

**b)** 
$$\frac{x\left(1 - \frac{3}{x} - \frac{2}{x^2}\right)}{-\frac{2}{x} - 3}$$

c) 
$$\frac{x\left(\frac{4}{x^3} - \frac{3}{x^2} + 1\right)}{\frac{3}{x^2} - 1 + \frac{4}{x}}$$

**d)** 
$$\frac{1 - e^{-2x} + e^{-3x}}{e^x (e^{-3x} - 2)}$$

**2.** 
$$\lim_{x \to -\infty} a(x) = \frac{2}{3} \text{ et } \lim_{x \to +\infty} a(x) = \frac{2}{3}.$$

$$\lim_{x \to -\infty} b(x) = +\infty \text{ et } \lim_{x \to +\infty} b(x) = -\infty.$$

$$\lim_{x \to -\infty} c(x) = +\infty \text{ et } \lim_{x \to +\infty} c(x) = -\infty.$$

$$\lim_{x \to -\infty} d(x) = -\infty \text{ et } \lim_{x \to +\infty} d(x) = 0.$$

**80. a)**  $\lim_{x \to -\infty} f(x) = +\infty$  non indéterminée

et 
$$f(x) = x^2 \left(1 - \frac{2}{x} + \frac{3}{x^2}\right)$$
 donne  $\lim_{x \to \pm \infty} f(x) = +\infty$ .

b) Indéterminée dans les deux cas

et 
$$g(x) = x^4 \left( 1 + \frac{4}{x} - \frac{2}{x^3} \right)$$
 donne  $\lim_{x \to \pm \infty} g(x) = +\infty$ 

et 
$$\lim_{x\to -\infty} g(x) = +\infty$$
.

c) Indéterminée dans les deux cas

et 
$$h(x) = \frac{2x\left(1 + \frac{1}{2x^2}\right)}{-\left(-\frac{1}{x} + 1\right)}$$
 donne  $\lim_{x \to \pm \infty} h(x) = -\infty$ 

et 
$$\lim_{x \to \infty} h(x) = +\infty$$
.

**d)**  $\lim_{x \to -\infty} k(x) = -\infty$  non indéterminée

et 
$$k(x) = \frac{1 + e^{-x} - e^{-2x}}{e^{-x} - 3}$$
 donne  $\lim_{x \to \pm \infty} k(x) = -\frac{1}{3}$ .

**81.** 1. a) 
$$\frac{(x-1)^2}{x-1} = x-1$$

**b)** 
$$\frac{(x-1)^2}{(x-1)(2x-4)} = \frac{x-1}{2x-4}$$

**2.** 
$$\lim_{x \to 1^-} a(x) = 0$$
 et  $\lim_{x \to 1^+} a(x) = 0$ 

$$\lim_{x \to 1^{-}} b(x) = 0$$
 et  $\lim_{x \to 1^{+}} b(x) = 0$ 

**82. a)** 
$$\lim_{x \to 1^+} f(x) = -\infty$$
 et  $\lim_{x \to 1^+} f(x) = +\infty$ .

**b)** 
$$g(x) = \frac{(x-2)^2}{(x-2)(x-1)} = \frac{x-2}{x-1}$$
 donne

$$\lim_{x \to 2^{-}} g(x) = 0 \text{ et } \lim_{x \to 2^{+}} g(x) = 0.$$

c) 
$$h(x) = \frac{(x-1)(x+3)}{x+3} = x-1$$
 donne

$$\lim_{x \to -3^{-}} h(x) = -4 \text{ et } \lim_{x \to -3^{+}} h(x) = -4.$$

**d)** 
$$k(x) = \frac{(\sqrt{x} - 1)(\sqrt{x} + 1)}{\sqrt{x} - 1} = \sqrt{x} + 1$$
 donne

$$\lim_{x \to 1^{-}} k(x) = 2 \text{ et } \lim_{x \to 1^{+}} k(x) = 2.$$

**83.** L'ensemble de définition est :  $]-\infty$  ;  $2[\cup]2$  ;  $+\infty[$ .

À l'infini c'est indéterminé et 
$$f(x) = \frac{x\left(1 + \frac{1}{x^2}\right)}{\frac{2}{x} - 1}$$
,

ce qui donne  $\lim_{x \to +\infty} f(x) = -\infty$  et  $\lim_{x \to +\infty} f(x) = +\infty$ .

D'autre part : 
$$\lim_{x\to 2^-} f(x) = +\infty$$
 et  $\lim_{x\to 2^+} f(x) = -\infty$ .

**84.** L'ensemble de définition est : ]0;  $+\infty[$ .

À l'infini c'est indéterminé et  $f(x) = \frac{1}{x} - \frac{1}{\sqrt{x}}$  ce qui

donne 
$$\lim_{x\to\pm\infty} f(x) = 0$$
. D'autre part :  $\lim_{x\to0^+} f(x) = +\infty$ .

**85. 1.** L'ensemble de définition est :  $]-\infty$ ;  $-1[\cup]1$ ;  $+\infty[$ .

2. À l'infini c'est indéterminé et 
$$f(x) = \frac{x}{|x|\sqrt{1-\frac{1}{x^2}}}$$
 ce

qui donne  $\lim_{x\to\pm\infty} f(x) = 1$  et d'autre part :  $\lim_{x\to 1^+} f(x) = +\infty$ .

**3.** On peut donc dire que f présente une asymptote verticale d'équation x = 1 et une asymptote horizontale d'équation y = 1.

**86.** 1. 
$$\lim_{x \to +\infty} f(x) = +\infty$$
 et  $\lim_{x \to -\infty} f(x) = -\infty$ .

2. 
$$f(x) = \frac{\frac{1}{x} - 5}{x\left(1 - \frac{16}{x^2}\right)}$$
 donne  $\lim_{x \to \pm \infty} f(x) = 0$  et  $\lim_{x \to -\infty} f(x) = 0$ .

**3.** La fenêtre est surement entre les valeurs interdites –4 et 4.

**87.** 1. 
$$\lim_{x\to 0^+} f(x) = 1$$

**2.** 
$$f(x) = \sqrt{x+1} + \sqrt{x}$$
 donne  $\lim_{x \to \pm \infty} f(x) = +\infty$ .

**88. a)** 
$$f(x) = \frac{1}{\sqrt{x^2 + 1} + x}$$
 donne  $\lim_{x \to \pm \infty} f(x) = 0$ .

**b)** 
$$f(x) = \sqrt{x + \frac{1}{x}} - x = x \left( \sqrt{\frac{1}{x} + \frac{1}{x^3}} - 1 \right)$$
 donne

$$\lim_{x \to \pm \infty} f(x) = -\infty.$$

**89.** Courbe 1 pour f, courbe 2 pour k, courbe 3 pour g et courbe 4 pour h.

## Comparaison

**90.** a) 
$$f(x) \ge x - 1$$
 donc  $\lim_{x \to \pm \infty} f(x) = +\infty$ .

**b)** 
$$f(x) \ge (x-1)^2 \operatorname{donc} \lim_{x \to \pm \infty} f(x) = +\infty.$$

c) 
$$f(x) \le \frac{x^3}{x-1}$$
 donc  $\lim_{x \to 1^-} f(x) = -\infty$ .

**d)** 
$$f(x) \le \frac{x^3 + 2}{(x - 1)^2}$$
 donc  $\lim_{x \to -\infty} f(x) = -\infty$ .

**91.** 1. 
$$\sqrt{x+1} - \sqrt{x} = \frac{1}{\sqrt{x+1} + \sqrt{x}} \le \frac{1}{2\sqrt{x}}$$

**2.** Par encadrement  $\lim_{x\to\pm\infty} f(x) = 0$ .

**92. 1.** 
$$x + \frac{1}{2} - 1 \le E\left(x + \frac{1}{2}\right) \le x + \frac{1}{2}$$

D'où 
$$1 - \frac{1}{2x} \le f(x) \le 1 + \frac{1}{2x}$$
.

**2.** Par encadrement  $\lim_{x \to \pm \infty} f(x) = 1$ .

#### Croissances comparées

**93.** Courbe a) pour k, courbe b) pour f, courbe c) pour g et courbe d) pour h.

**94.** a) 
$$\lim_{x \to +\infty} f(x) = +\infty$$
 et  $\lim_{x \to +\infty} f(x) = 0$ .

**b)** 
$$\lim g(x) = -\infty$$
 et

$$g(x) = e^x \left( 1 + \frac{x}{e^x} \right)$$
 donne  $\lim_{x \to +\infty} g(x) = +\infty$ .

**c)** 
$$\lim h(x) = 1$$
 et

donne 
$$h(x) = e^{2x} \left( 1 - \frac{x}{e^x} + e^{-2x} \right) \lim_{x \to +\infty} h(x) = +\infty.$$

**d)** 
$$\lim k(x) = +\infty$$

et 
$$k(x) = e^x \left( \frac{x^4}{e^x} - 2x + \frac{e^2}{e^x} \right)$$
 donne  $\lim_{x \to +\infty} k(x) = -\infty$ .

**95. a)**  $\lim_{x\to\pm\infty} 3x^2 + 3x - 6 = +\infty$  et  $\lim_{x\to\pm\infty} \sqrt{X} = +\infty$  donc par composition de limites  $\lim_{x\to\infty} f(x) = +\infty$ .

$$3x^2 + 3x - 6 = 3x^2 \left( 1 + \frac{1}{x} - \frac{2}{x^2} \right)$$

donne 
$$\lim_{x \to +\infty} 3x^2 + 3x - 6 = +\infty$$
 et  $\lim_{x \to +\infty} \sqrt{X} = +\infty$ 

donc par composition de limites  $\lim_{x \to -\infty} f(x) = +\infty$ .

**b)** 
$$\lim_{x\to 2^{-}} -\frac{1}{x-2} = +\infty$$
 et  $\lim_{x\to \pm \infty} e^{x} = +\infty$ 

donc par composition de limites  $\lim_{x\to 2^-} g(x) = +\infty$ 

$$\lim_{x\to 2^+} -\frac{1}{x-2} = -\infty \text{ et } \lim_{x\to -\infty} e^x = 0$$

donc par composition de limites  $\lim_{x\to 2^{+}} g(x) = 0$ .

**c)** 
$$\frac{3\pi x - 2\pi + 1}{1 - 6x} = \frac{3\pi \left(1 - \frac{2}{3x} + \frac{1}{3\pi x}\right)}{\frac{1}{x} - 6}$$

donne 
$$\lim_{x \to -\infty} \frac{3\pi x - 2\pi + 1}{1 - 6x} = -\frac{\pi}{2}$$
 et  $\lim_{x \to -\frac{\pi}{2}} \sin(x) = -1$ 

donc par composition de limites  $\lim_{x\to -\infty} h(x) = -1$ . Idem en  $+\infty$ .

**d)** 
$$\lim_{x\to 0^-} \frac{1}{x} = -\infty$$
 et  $\lim_{X\to -\infty} e^X = 0$  donc par composition

et somme de limites 
$$\lim_{x\to 0^-} k(x) = -\infty$$

$$\lim_{x\to 0^+} \frac{1}{x} = +\infty \quad \text{et} \quad \lim_{x\to +\infty} e^x = +\infty \quad \text{donc par composition}$$

et somme de limites :  $\lim_{x\to 0^+} k(x) = +\infty$ .

## 96. Oui on le vérifie bien.

$$\lim_{x\to +\infty} 1-x=-\infty$$
 et  $\lim_{x\to -\infty} Xe^x=0$  donc par composition

$$\lim_{x \to +\infty} (1 - x)e^{1-x} = 0 \text{ et par ailleurs } \frac{\sqrt{x}}{1 - x} = \frac{1}{\sqrt{x} \left(\frac{1}{x} - 1\right)}$$

donne  $\lim_{x\to +\infty} \frac{\sqrt{x}}{1-x} = 0$  donc par somme de limites

$$\lim_{x\to\infty}f(x)=0.$$

## Études de fonctions

**97.** 1. 
$$]-\infty; -\frac{7}{3}[\ \cup\ ]-\frac{7}{3}; +\infty[$$

**2.** 
$$f'(x) = \frac{1}{(-3x - 7)^2} > 0$$
 donc *f* est toujours

croissante.

3. 
$$f(x) = \frac{-4 - \frac{9}{x}}{-3 - \frac{7}{x}}$$
 donne que  $\lim_{x \to \pm \infty} f(x) = \frac{4}{3}$ 

et 
$$\lim_{x \to -\infty} f(x) = \frac{4}{3}$$

$$\lim_{x \to -\frac{7}{3}} -4x - 9 = \frac{1}{3} \text{ et donc } \lim_{x \to -\frac{7}{3}} f(x) = +\infty$$

et 
$$\lim_{x \to -\frac{7}{2}^+} f(x) = -\infty$$
.

4.

| <b>~•</b> |               |               |
|-----------|---------------|---------------|
| x         |               | <u>7</u> 3 +∞ |
| f'(x)     | +             | +             |
| f(x)      | $\frac{4}{3}$ | $\frac{4}{3}$ |

**98.** 
$$f'(x) = 1e^{-x} + (x + 1)(-e^{-x}) = -xe^{-x}$$
 qui est du signe de  $-x$ .

$$\lim_{x \to \infty} x + 1 = -\infty$$
 et  $\lim_{x \to \infty} e^{-x} = +\infty$  donc par produit

$$\lim f(x) = -\infty.$$

C'est indéterminé en +∞, alors on écrit :

$$f(x) = \frac{x}{e^x} + e^{-x}$$
 puis  $\lim_{x \to +\infty} \frac{x}{e^x} = 0$  et  $\lim_{x \to +\infty} e^{-x} = 0$ 

donc par somme  $\lim_{x \to \infty} f(x) = 0$ .

| x     | -∞ |          | 0   | +∞         |
|-------|----|----------|-----|------------|
| f'(x) | -  | +        | 0 - |            |
| f(x)  | -8 | <b>≠</b> | 1   | <b>~</b> 0 |

**99. 1.** 
$$f(x) = \frac{1 - \frac{2}{x}}{2 + \frac{8}{x}}$$
 donne  $\lim_{x \to +\infty} f(x) = \frac{1}{2}$ .

Et 
$$\lim_{x \to -4} x - 2 = -6$$
 donne  $\lim_{x \to -4^-} f(x) = +\infty$  et

 $\lim_{x \to \infty} f(x) = -\infty$  et donc la courbe possède deux

asymptotes d'équations  $y = \frac{1}{2}$  et x = -4.

**2.** 
$$f(x) - \frac{1}{2} = -\frac{12}{2(2x+8)}$$
 donc la courbe est

au-dessus de son asymptote sur ]- $\infty$  ; -4[ et en dessous sur ]-4 ; + $\infty$ [.

**100 1.** 
$$f(x) = \frac{2}{x\left(1 - \frac{4}{x^2}\right)}$$
 donne  $\lim_{x \to -\infty} f(x) = 0 = \lim_{x \to +\infty} f(x)$ 

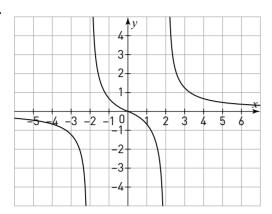
donc une asymptote horizontale d'équation y = 0.

2. 
$$\lim_{x\to 2} \frac{2x}{x+2} = 1$$
 donc  $\lim_{x\to 2^-} f(x) = -\infty$  et  $\lim_{x\to 2^+} f(x) = +\infty$  donc une asymptote verticale d'équation  $x=2$ .

3. 
$$\lim_{x\to -2} \frac{2x}{x-2} = 1$$
 donc  $\lim_{x\to -2^-} f(x) = -\infty$  et  $\lim_{x\to -2^+} f(x) = +\infty$  donc une asymptote verticale d'équation  $x = -2$ .

**4.**  $f'(x) = \frac{-2(x^2 + 4)}{(x^2 - 4)^2} < 0$  donc toujours décroissante.

5.



**101.** On vérifiera que les règles de la démonstration sont observées.

102. On peut voir l'exercice 133.

## **Exercices bilan**

p. 70

#### 103. Calcul de limite

**1.**  $f(x) = \frac{1}{x} \frac{x^2}{e^{x^2}}$  donne par produit  $\lim_{x \to +\infty} f(x) = 0$ .

**2.** 
$$f\left(\frac{\sqrt{2}}{2}\right) = \frac{\sqrt{2}}{2}e^{-\frac{1}{2}}$$

#### 104. Suite de fonctions

**1.** On a  $f_n(0) = \frac{1}{2}$  indépendant de n donc  $A\left(0; \frac{1}{2}\right)$ .

**2. a)**  $f_0'(x) = \frac{e^{-x}}{(1 + e^{-x})^2} > 0$  donc strictement croissante.

**b)**  $\lim_{x\to -\infty} f_0(x) = 0$  et  $\lim_{x\to +\infty} f_0(x) = 1$  donc deux asymptotes horizontales d'équations y = 0 et y = 1.

c) 
$$x \to \infty$$
  $+\infty$   $f_0'(x)$   $+$   $f_0(x)$   $0$ 

**3. a)** 
$$f_1(-x) = \frac{e^x}{1+e^x} = \frac{1}{1+e^{-x}} = f_0(x)$$

**b)** Par composition on en déduit que  $\lim_{x\to -\infty} f_1(x) = 1$  et  $\lim_{x\to +\infty} f(x) = 0$  et  $\int_0^x f(x) = -f_1'(x) donc f_1$  est décroissante.

c) Les courbes sont symétriques par rapport à la droite d'équation  $y = \frac{1}{2}$ .

**4. a)** 
$$f_n(x) = \frac{1}{e^{nx} \{1 + e^{-x}\}} = \frac{1}{e^{nx} + e^{(n-1)x}}$$

**b)**  $\lim_{x \to -\infty} f_n(x) = +\infty$  et  $\lim_{x \to +\infty} f_n(x) = 0$ .

c)  $f_n'(x) = -\frac{ne^{nx} + (n-1)e^{(n-1)x}}{(e^{nx} + e^{(n-1)x})^2} < 0$  donc les fonctions  $f_n$  sont décroissantes.

## 105. Évolution d'une proportion

**1.**  $p(10) \approx 0.88$ 

**2. a)**  $p'(x) = \frac{0.2e^{-0.2x}}{(1+e^{-0.2x})^2} > 0$  donc p est croissante.

**b)** Par composition  $\lim_{x\to\infty} p(x) = 1$ .

c) Plus les années s'écoulent, plus la proportion de personnes équipées augmentera jusqu'à ce que toutes les personnes soient équipées.

#### 106. Taux d'alcoolémie

**1.**  $f'(t) = 2e^{-t} + 2t(-e^{-t}) = 2(1-t)e^{-t}$  donc croissante sur [0; 1] et décroissante sur [1; + $\infty$ [.

**2.** Elle est maximale pour t = 1 et vaut  $f(1) = 2e^{-1} \approx 0.74$ .

3.  $\lim_{t\to+\infty} \frac{\mathrm{e}^t}{t} = +\infty$  donc  $\lim_{t\to+\infty} f(t) = 0$  donc la concentration d'alcool disparaît.

**4. a)** Car la limite est nulle donc la concentration sera inférieure à  $5 \times 10^{-3}$ .

bì

|   | Initialisation | Étape 1 | Étape 2 |
|---|----------------|---------|---------|
| р | 0,25           | 0,25    | 0,25    |
| t | 3,5            | 3,75    | 4       |
| С | 0,21           | 0,18    | 0,15    |

La valeur affichée est le temps nécessaire, en heure, pour que l'alcool ne soit plus détectable dans le sang.

## Préparer le BAC Je me teste

p. 72

107. D

108. D

109. B

**110. A** et **D** 

111. D

112. C

113. B

114. B

115. C

## Préparer le BAC Je révise

n 73

## 116. Observations graphiques

- **1.** c)
- **2.** b)
- 3. b)

#### 117. Courbe représentative

- **1.** b)
- **2.** d)

#### 118. Opérations sur les limites

a) 
$$\lim f(x) = +\infty$$

**b)** 
$$\lim_{x \to -\infty} f(x) = -\infty$$

c) 
$$\lim_{x\to +\infty} f(x) = 0$$

**d)** 
$$\lim_{x \to +\infty} f(x) = -1$$

#### 119. Comparaison de fonctions

a) 
$$\lim_{x \to +\infty} f(x) = +\infty$$

**b)** 
$$\lim_{x \to 0} f(x) = 0$$

#### 120. Limites et croissances comparées

- **1.** b)
- **2.** c)
- **3.** c)

## 121. Composition de limites

- **1.** b)
- **2.** b)
- **3.** c)

# Exercices vers le supérieur

p. 74

# 122. Calcul de limites

**a)** 
$$f(x) = \frac{2}{\sqrt{x+2} + \sqrt{2-x}}$$
 donc  $\lim_{x \to 0} f(x) = \frac{1}{\sqrt{2}}$ .

**b)** 
$$f(x) = \frac{2x^{n-1}}{\sqrt{1+x^n} + \sqrt{1-x^n}}$$
 donc  $\lim_{x \to 0} f(x) = 0$ .

c) 
$$f(x) = \frac{x+1}{\sqrt{x^2+x+1}+1}$$
 donc  $\lim_{x\to 0} f(x) = \frac{1}{2}$ .

**d)** 
$$f(x) = \frac{-1}{\sqrt{x^2 + 1} + \sqrt{x^2 + x + 1}}$$
 donc  $\lim_{x \to 0} f(x) = -\frac{1}{2}$ .

## 123. Contres-exemples

**1.** 
$$f(x) = x^3 - 3x^2$$

**2.** 
$$f(x) = -\frac{1}{x^3}$$

**3.** 
$$f(x) = x^2 - 4$$

#### 124. Utiliser les définitions

## A. Préliminaires

**1.** 
$$\Delta = (3 - M)^2 - 4(1 - 2M) = M^2 + 2M + 5$$
  
= $(M + 1)^2 + 4 > 0$ 

**2. a)** Car si 
$$x > 0$$
 alors  $-\frac{1}{x+2} < 0$ .

**b)** L'inéquation donne  $x > 2 - \frac{1}{\epsilon}$  et  $\epsilon$  étant petit alors x est grand.

#### **B.** Démonstrations

**1.** 
$$f(x) = \frac{(x+1)(x+2)-1}{x+2} = x+1-\frac{1}{x+2}$$
 et donc,

d'après la partie A,  $\lim_{x\to\infty} f(x) - (x+1) = 0$ .

**2. a)** 
$$f(x) > M \Leftrightarrow \frac{x^2 + 3x + 1}{x + 2} > M$$

$$\Leftrightarrow x^2 + (3 - M)x + 1 - 2M < 0$$

$$car x + 2 < 0.$$

Donc x est entre les racines du trinôme comme -2 car  $(-2)^2 + (3 - M)(-2) + 1 - 2M = -1$ .

**b)** Donc 
$$\lim_{x\to -2^-} f(x) = +\infty$$
.

3. a) 
$$f(x) < m \Leftrightarrow \frac{x^2 + 3x + 1}{x + 2} < m$$
  
 $\Leftrightarrow x^2 + (3 - m)x + 1 - 2m < 0$   
car  $x + 2 > 0$ .

Donc x est entre les racines du trinôme comme -2 car  $(-2)^2 + (3 - M)(-2) + 1 - 2M = -1$ .

**b)** Donc 
$$\lim_{x \to -2^+} f(x) = -\infty$$
.

## 125. Asymptotes paramétrées

- 1. Pour a négatif.
- 2. Pour toutes les valeurs réelles.
- **3.** Pour toutes les valeurs sauf  $\frac{1}{2}$ .

## 126. Asymptote oblique (1)

$$\frac{(ax+b)(2x-2)+c}{2x-2} = \frac{2ax^2 + (2b-2a)x + (c-2b)}{2x-2}$$

d'où le système : 
$$\begin{cases} 2a = 1 \\ 2b - 2a = 1 \\ c - 2b = -6 \end{cases}$$

qui donne  $a = \frac{1}{2}$ , b = 1 et c = -4.

On en déduit que l'asymptote oblique a pour équation  $y = \frac{1}{2}x + 1$ .

## 127. Asymptote oblique (2)

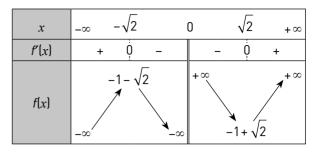
**1. a)** 
$$]-\infty$$
;  $0[\cup]0$ ;  $+\infty[$ 

**b)** 
$$f'(x) = \frac{2x^2 - 4}{4x^2}$$
 qui s'annule en  $\pm \sqrt{2}$ 

$$\lim_{x\to 0^-} f(x) = -\infty \text{ et } \lim_{x\to 0^+} f(x) = +\infty$$

$$f(x) = \frac{x\left(1 - \frac{2}{x} + \frac{2}{x^2}\right)}{2} \text{ qui donne } \lim_{x \to -\infty} f(x) = -\infty$$

et 
$$\lim_{x\to +\infty} f(x) = +\infty$$
.



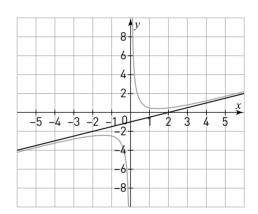
c) Une asymptote verticale d'équation x = 0.

**2. a)** 
$$f(x) - \left(\frac{x}{2} - 1\right) = \frac{1}{x} \text{ d'où } \lim_{x \to -\infty} f(x) - \left(\frac{x}{2} - 1\right) = 0$$

et 
$$\lim_{x\to+\infty} f(x) - \left(\frac{x}{2} - 1\right) = 0$$
.

**b)** Pour les réels négatifs, la courbe est en dessous de l'asymptote et pour les réels positifs elle est au-dessus.





## 128. Asymptote oblique (3)

**1.**  $\lim_{x \to -1^+} f(x) = -\infty$  et  $\lim_{x \to -1^+} f(x) = +\infty$  donc la courbe admet une asymptote verticale d'équation x = -1.

**2.** 
$$f(x) - \left(-\frac{1}{2}x + \frac{3}{2}\right) = \frac{2}{2x+2}$$

donc 
$$\lim_{x\to -\infty} f(x) - \left(-\frac{x}{2} + \frac{3}{2}\right) = 0$$

$$\operatorname{et} \lim_{x \to +\infty} f(x) - \left( -\frac{x}{2} + \frac{3}{2} \right) = 0.$$

3. Le point (-1 ; 2) est centre de symétrie quand  $\frac{f(-1-h)+f(-1+h)}{2} = 2.$ 

## 129. Branches infinies (1)

**1.** 
$$\lim_{x \to +\infty} f(x) = +\infty = \lim_{x \to +\infty} g(x)$$

**2. a)** 
$$\frac{f(x)}{x} = \frac{1}{\sqrt{x}}$$

**b)** 
$$\frac{g(x)}{x} = x$$

3. a) 
$$\frac{f(x)}{x} = \frac{x\left(2 + \frac{3}{x^2}\right)}{1 + \frac{1}{x}}$$
 d'où  $\lim_{x \to +\infty} \frac{f(x)}{x} = +\infty$ 

et branche parabolique d'axe (0y).

**b)** 
$$\frac{g(x)}{x} = \frac{1 + \frac{1}{\sqrt{x}} - \frac{4}{x\sqrt{x}}}{\sqrt{x} \left(1 + \frac{2}{x}\right)}$$
 d'où  $\lim_{x \to +\infty} \frac{g(x)}{x} = 0$ 

et branche parabolique d'axe (0x).

c) 
$$\frac{h(x)}{x} = \frac{e^x(1+e^{-x})}{x^3}$$
 d'où  $\lim_{x\to +\infty} \frac{h(x)}{x} = +\infty$  et branche parabolique d'axe  $(0y)$ .

**d)** 
$$\frac{k(x)}{x} = \frac{1 + \frac{\sin(x)}{\sqrt{x}}}{\sqrt{x}} \text{ d'où } \lim_{x \to +\infty} \frac{k(x)}{x} = 0 \text{ et branche}$$
 parabolique d'axe  $\{0x\}$ .

#### 130. Branches infinies (2)

**1. a)** 
$$f(x) = \frac{x\left(2 + \frac{1}{x}\right)}{1 + \frac{1}{x}}$$
 et  $g(x) = \frac{x\left(1 + \frac{1}{\sqrt{x}}\right)}{1 + \frac{1}{x}}$  donne bien

les limites infinies.

**b)** 
$$\frac{f(x)}{x} = \frac{2 + \frac{1}{x}}{1 + \frac{1}{x}}$$
 et  $\frac{g(x)}{x} = \frac{1 + \frac{1}{\sqrt{x}}}{1 + \frac{1}{x}}$ 

donnent  $\lim_{x \to +\infty} \frac{f(x)}{x} = 2$  et  $\lim_{x \to +\infty} \frac{g(x)}{x} = 1$ .

c) Ni l'un ni l'autre.

**2. a)** Pour f on a a = 2 et pour g, a = 1.

**b)** 
$$f(x) - (2x + b) = \frac{-(1+b)x - b}{x+1}$$

c) Ce qui s'écrit aussi  $\frac{-(1+b) - \frac{b}{x}}{1 + \frac{1}{x}}$  et donc

$$\lim_{x \to +\infty} f(x) - (2x + b) = -(1 + b)$$

pour que la droite d'équation y = 2x + b soit asymptote oblique, il faut que cette limite soit nulle donc que b = -1.

3. 
$$g(x) - (x + b) = \frac{x\sqrt{x} - (1+b)x - b}{x+1}$$

$$= \frac{\sqrt{x}\left(1 - \frac{1+b}{\sqrt{x}} - \frac{b}{x\sqrt{x}}\right)}{1 + \frac{1}{x}}$$

et  $\lim_{x\to +\infty} g(x) - (x+b) = +\infty$  donc pas d'asymptote oblique.

**4.** 
$$f(x) - 2x = -\frac{x}{1+x} = -\frac{1}{1+\frac{1}{x}}$$
 et  $\lim_{x \to +\infty} f(x) - 2x = -1$ 

on retrouve b.

#### 131. Fonction paire

Comme f(-x) = f(x) quand x tend vers  $-\infty$  alors -x tend vers  $+\infty$ .

#### 132. Utilisation de la dérivée

**1. a)** 
$$\frac{f(x) - f(0)}{x} = \frac{\sqrt{9 - x - 3}}{x}$$

**b)** = 
$$\frac{-x}{x(\sqrt{9-x}+3)} = -\frac{1}{\sqrt{9-x}+3}$$

et donc 
$$\lim_{x\to 0} \frac{\sqrt{9-x}-3}{x} = -\frac{1}{6}$$
.

c) Cela rappelle f'(0) et si on calcule  $f'(x) = -\frac{1}{2\sqrt{9-x}}$ 

qui donne 
$$f'(0) = -\frac{1}{6}$$
.

**2. a)** 
$$f'(x) = \frac{1}{\sqrt{2x+1}}$$
 et  $f'(0) = 1$ 

donc 
$$\lim_{x\to 0} \frac{\sqrt{2x+1}-1}{x} = -1$$
.

**b)** 
$$f'(x) = e^{x-1}$$
 et  $f'(1) = 1$  donc  $\lim_{x \to 1} \frac{e^{x-1} - e}{x - 1} = 1$ .

## 133. Règle de l'Hôpital

- **1. a)** f'(x) = 2x et  $g'(x) = e^x$  donc la limite vaut  $\frac{2 \times 0}{e^0} = 0$ .
- **b)**  $f'(x) = 1 \times e^{x^2-1} + x \times 2xe^{x^2-1}$  et  $g'(x) = e^x$  donc la limite vaut  $\frac{e^{-1} + 0}{e^0} = e^{-1}$ .
- **2. a)**  $\frac{3x+1}{x^2-1} = \frac{3x+1}{(x+1)(x-1)}$  donne  $\lim_{x\to 1^+} \frac{3x+1}{x^2-1} = +\infty$ .
- **b)** Avec la règle on obtient  $\frac{3}{2 \times 1} = \frac{3}{2}$  différent car  $\lim_{x \to 1} 3x + 1 \neq 0$ .
- **3. a)**  $h(x) = x \sin\left(\frac{1}{x}\right) = \frac{\sin(X)}{X}$  qui par encadrement et comme X tend vers  $+\infty$  donne comme limite 0.

**b)** 
$$f'(x) = 2x \sin\left(\frac{1}{x}\right) + x^2 \times \left(-\frac{1}{x^2}\right) \cos\left(\frac{1}{x}\right)$$
$$= 2x \sin\left(\frac{1}{x}\right) - \cos\left(\frac{1}{x}\right)$$

et g'(x) = 1.

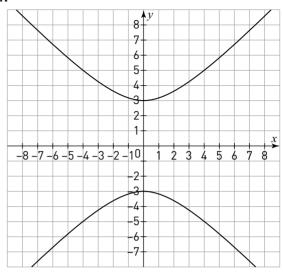
c) 
$$\frac{f'\left(\frac{1}{2n\pi}\right)}{g'\left(\frac{1}{2n\pi}\right)} = \frac{1}{n\pi}\sin(2n\pi) - \cos(2n\pi) = -1$$

si on pose  $v_n = \frac{1}{n\pi}$  le résultat précédent devient ±1 donc pas limite.

**d)** La condition  $g(a) \neq 0$  n'est pas réalisée.

#### 134. Coniques

1.



Deux limites?

**2.** 
$$y^2 = x^2 + 9$$
 d'où  $y = \pm \sqrt{x^2 + 9}$ .

3. 
$$f'(x) = \frac{x}{\sqrt{x^2 + 9}}$$
 et  $\lim_{x \to +\infty} f(x) = +\infty = \lim_{x \to -\infty} f(x)$ 

et le tableau :

| x     | -∞ | 0 |   | + 8         |
|-------|----|---|---|-------------|
| f'(x) | _  | Ō | + |             |
| f(x)  | +∞ | 3 | / | <b>y</b> +∞ |

**4.** 
$$f(x) - x = \sqrt{x^2 + 9} - x = \frac{9}{\sqrt{x^2 + 9} + x}$$

donne  $\lim_{x \to \infty} f(x) - x = 0$  et

$$-f(x) - x = -\sqrt{x^2 + 9} - x = \frac{-9}{\sqrt{x^2 + 9} - x}$$

donne  $\lim_{x\to -\infty} -f(x) - x = 0$ , on en déduit que la droite est asymptote aux deux courbes.

**5.** De même y = -x est asymptote.

## 135. Calculs de limites (1)

**a)** 
$$\sqrt{x + \sqrt{x}} - \sqrt{x} = \frac{\sqrt{x}}{\sqrt{x + \sqrt{x}} + \sqrt{x}} = \frac{1}{\sqrt{1 + \frac{1}{\sqrt{x}}} + 1}$$

donne comme limite  $\frac{1}{2}$ .

b) Avec la règle de l'Hôpital la limite est

$$\frac{(n+1)a^n}{na^{n-1}}=\frac{(n+1)a}{n}.$$

c) Par comparaison la limite est infinie.

d١

$$f(x) = \frac{\sqrt{x} - \sqrt{a}}{\sqrt{x^2 - a^2}} - \frac{1}{\sqrt{x + a}} = \frac{\sqrt{x - a}}{(\sqrt{x} + \sqrt{a})\sqrt{x + a}} - \frac{1}{\sqrt{x + a}}$$

et la limite donne  $-\frac{1}{\sqrt{2a}}$ .

**e)** 
$$f(x) = \frac{\sqrt{1 + \sqrt{\frac{1}{x} + \frac{1}{x\sqrt{x}}}}}{\sqrt{1 + \frac{1}{x}}}$$
 qui tend vers 1.

## 136. Calculs de limites (2)

1. 
$$\sqrt{x+n} - \sqrt{x} = \frac{n}{\sqrt{x+n} + \sqrt{x}}$$
 qui tend vers 0.

**2.** On associe une  $\sqrt{x}$  à chaque terme et du coup chaque différence ayant pour limite 0 d'après 1, la somme aussi.

#### 137. Partie entière

1. 
$$\lim_{x \to 0} xE\left(\frac{2}{x}\right) = 2$$
 et  $\lim_{x \to 0^-} \frac{2}{x}E(x) = +\infty$  et  $\lim_{x \to 0^+} \frac{2}{x}E(x) = 0$ .

2. 
$$\lim_{x\to 0} \frac{x}{a} E\left(\frac{b}{x}\right) = \frac{b}{a}$$
 et  $\lim_{x\to 0^-} \frac{b}{x} E\left(\frac{x}{a}\right) = +\infty$ 

et 
$$\lim_{x\to 0^+} \frac{b}{x} E\left(\frac{x}{a}\right) = 0$$
.

## 138. Fonction périodique

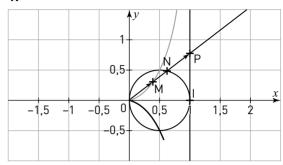
1. La suite tend vers l'infini.

**2.** 
$$f(x + nT) = f(x)$$

#### 139. Cissoïde de Dioclès

## A. Construction de la cissoïde

1



**2.** C'est pareil et l'autre partie est la fonction -f(x).

## B. Équation de la cissoïde

**1. a)** (OP) 
$$y = tx$$

**b)** Équation du cercle : 
$$\left(x - \frac{1}{2}\right)^2 + y^2 = \frac{1}{4}$$

c) On remplace, ce qui donne 
$$\left(x-\frac{1}{2}\right)^2 + t^2x^2 = \frac{1}{4}$$

d'où 
$$x = \frac{1}{t^2 + 1}$$
 et  $N\left(\frac{1}{t^2 + 1}; \frac{t}{t^2 + 1}\right)$ 

2. De plus 
$$\overrightarrow{NP}$$
  $\left(\begin{array}{c} \frac{t^2}{t^2+1} \\ \frac{t^3}{t^2+1} \end{array}\right)$  qui sont aussi

les coordonnées de M.

- 3. On vérifie.
- **4.** L'équation en  $y^2$  a donc deux solutions symétriques par rapport à l'axe des abscisses.

**5. a)** 
$$g'(t) = -\frac{2t}{(1+t^2)^2}$$
 d'où le tableau :

| t     | -∞ 0 + α |   |
|-------|----------|---|
| g'(t) | + 0 -    |   |
| g(t)  | 0        | ן |

- **b)** donc dans [0; 1].
- c) OK.

# C. Détermination de <sup>3</sup>√2

**1.** La droite (IM) a pour équation  $y = -t^3 x + t^3$  donc R(0 :  $t^3$ ).

**2.** Pour  $t = \sqrt[3]{2}$  alors R(0; 2) donc il suffit de faire varier P pour que R corresponde à ce point et l'ordonnée de P donne la réponse.

## 140. Fonction équivalentes

**1. a)** 
$$\frac{f(x)}{g(x)} = e^{\frac{1}{x^2}}$$
 et par composée  $\lim_{x \to +\infty} \frac{f(x)}{g(x)} = 1$ .

**b)** 
$$\frac{f(x)}{g(x)} = \frac{\sqrt{4 + \frac{1}{x}}}{2}$$
 et par composée  $\lim_{x \to +\infty} \frac{f(x)}{g(x)} = 1$ .

**2.** a) 
$$g(x) = 2$$

**b)** 
$$g(x) = x$$

c) 
$$g(x) = x$$

**d)** 
$$g(x) = (a + 1)x$$

## 141. Fonctions asymptotiques

a) 
$$f(x) - g(x) = e^{-x}$$
 et par composée  $\lim_{x \to +\infty} f(x) - g(x) = 0$ .

**b)** 
$$f(x) - g(x) = \frac{\cos(x)}{\sqrt{x^4 + \cos(x) + x^2}}$$
 et par encadre-

ment  $\lim_{x \to \infty} f(x) - g(x) = 0$ .

## 142. Calcul de limites (3)

a) 
$$f(x) = \frac{e^{\frac{1}{x}} - 1}{\frac{1}{x}}$$
 et par composée  $\lim_{x \to +\infty} f(x) = 1$ .

**b)** 
$$f(x) = e^{\frac{1}{x}} \left( 1 - e^{-\frac{1}{x(x+1)}} \right)$$
 et par produit  $\lim_{x \to +\infty} f(x) = 0$ .

**c)** 
$$f(x) = \frac{2}{\sqrt{1+x} + \sqrt{1-x}}$$
 et par quotient  $\lim_{x\to 0} f(x) = 1$ .

**d)** 
$$\lim_{x \to \infty} f(x) = -\infty$$

## 143. Étude qualitative

**1.** Car 1 + 
$$x^2 > 0$$
 et  $\sqrt{1 + x^2} > x$ .

$$2. f'(x) = \frac{1 + \frac{x}{\sqrt{1 + x^2}}}{2\sqrt{x + \sqrt{1 + x^2}}} = \frac{\sqrt{1 + x^2} + x}{2\sqrt{x + \sqrt{1 + x^2}}} > 0$$

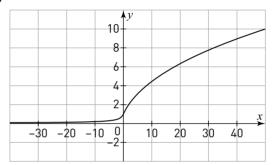
donc la fonction est croissante.

$$3. \lim_{x \to +\infty} f(x) = +\infty$$

**4. a)** 
$$x + \sqrt{1 + x^2} = \frac{-1}{x - \sqrt{1 + x^2}}$$

$$\operatorname{donc} \lim x + \sqrt{1 + x^2} = 0.$$

**b)** Par composée 
$$\lim_{x \to a} f(x) = 0$$
.



## 144. Triangle rectangle

**a)** 
$$h(x) = \sqrt{x^2 + 1}$$
 donc  $\frac{h(x) - 1}{x^2} = \frac{1}{\sqrt{x^2 + 1} + 1}$ 

donc 
$$\lim_{x\to 0} \frac{h(x)-1}{x^2} = \frac{1}{2}$$
.

**b)** 
$$x[h(x) - x] = \frac{x}{\sqrt{x^2 + 1} + x} = \frac{1}{\sqrt{1 + \frac{1}{x^2} + 1}}$$

et donc  $\lim_{x\to +\infty} x(h(x)-x) = \frac{1}{2}$ .

## 145. Fonction homographique

On a: 
$$-1 = -\frac{d}{c}$$
,  $2 = \frac{1}{c}$  et  $1 = \frac{b}{d}$ .  
Donc  $b = d = c = \frac{1}{2}$ .

## 146. Fonction exponentielle (1)

1. Tous les réels sauf 0.

**2. a)** 
$$f'(x) = \frac{x^{n-1}e^x(x-n)}{x^{2n}}$$
 et  $n-1$  est impair

donc  $x^{n-1}$  change de signe donc :

| x     | -∞ | 0 |   | n        |   | +∞ |
|-------|----|---|---|----------|---|----|
| f'(x) | +  | Ö | _ | Ò        | + |    |
| f(x)  |    | 7 |   | <b>\</b> |   | 7  |

**b)** 
$$\lim_{x \to +\infty} f(x) = +\infty$$
 et  $\lim_{x \to -\infty} f(x) = 0$ 

**3.** n-1 est pair. La dérivée est du signe de x-n.

| x     | _∞ ( | 0   | n | +∞ |
|-------|------|-----|---|----|
| f'(x) | - (  | , – | Ò | +  |
| f(x)  | _    |     |   | *  |

## 147. Fonction exponentielle (2)

- 1.  $\lim_{x\to -\infty} f(x) = 1$  donc une asymptote horizontale d'équation y = 1.
- $2. \lim_{x \to +\infty} f(x) = +\infty$
- 3. Oui.
- **4.** La dérivée est du signe de x + 1 donc :

| x     | -∞ | -1                 |   | +∞ |
|-------|----|--------------------|---|----|
| f'(x) | _  | Ò                  | + |    |
| f(x)  | 1  | 1- e <sup>-2</sup> |   | +∞ |

#### 148. Vitesse d'un véhicule

**1.**  $[0 : +\infty[$ 

**2. a)** 
$$t_a = \frac{d}{80}$$

**b)** 
$$t_r = \frac{d}{x}$$

**c)** 
$$t = t_a + t_r = \frac{d}{80} + \frac{d}{x}$$

3. 
$$v(x) = \frac{2d}{t} \Leftrightarrow \frac{2}{v(x)} = \frac{t}{d} = \frac{1}{80} + \frac{1}{x} \text{ donc } v(x) = \frac{2}{\frac{1}{80} + \frac{1}{x}}$$

4. 
$$v'(x) = \frac{\frac{2}{x^2}}{\left(\frac{1}{80} + \frac{1}{x}\right)^2} > 0$$
 donc croissante.

**5.**  $\lim_{x \to +\infty} v(x) = 160$  et  $\lim_{x \to 0^+} v(x) = 0$ .

## Travaux pratiques

p. 78

### TP 1. Datation au carbone 14

- Durée estimée : 55 min
- Objectif : Découvrir la datation au carbone 14.

## A. Étude de la fonction C

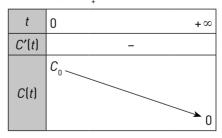
**1.** Pour étudier les variations d'une fonction dérivable, on détermine sa fonction dérivée afin d'obtenir son signe.

La fonction C est dérivable comme composée d'une fonction polynomiale par une fonction exponentielle, toutes deux dérivables sur  $\mathbb{R}$ . On obtient alors :  $C'(t) = -\lambda C_n \mathrm{e}^{-\lambda t}$ ,  $t \in \mathbb{R}_+$ .

Les constantes  $\lambda$  et  $C_0$  sont strictement positives ainsi la dérivée est strictement négatives sur  $\mathbb{R}_+$ . C est strictement décroissante sur  $\mathbb{R}_+$ .

**2.** On a d'une part  $\lim_{t\to +\infty} -\lambda t = -\infty$  car  $\lambda > 0$  et d'autre part  $\lim_{X\to -\infty} \mathrm{e}^{-X} = 0$ . Ainsi par limite d'une composée de fonctions continues, on obtient :  $\lim_{X\to -\infty} C(t) = 0$ .

On en déduit le tableau de variations complet de la fonction sur  $\mathbb{R}_{\+}$ .



#### B. Recherche de seuil

| 1. | 0     | 1E-12       |
|----|-------|-------------|
|    | 1 000 | 8,86034E-13 |
|    | 2 000 | 7,85056E-13 |

| 3 000  | 6,95586E-13 |
|--------|-------------|
| 4 000  | 6,16313E-13 |
| 5 000  | 5,46074E-13 |
| 6 000  | 4,8384E-13  |
| 7 000  | 4,28699E-13 |
| 8 000  | 3,79842E-13 |
| 9 000  | 3,36553E-13 |
| 10 000 | 2,98197E-13 |
| 11 000 | 2,64213E-13 |
| 12 000 | 2,34102E-13 |
| 13 000 | 2,07422E-13 |
| 14 000 | 1,83783E-13 |
| 15 000 | 1,62838E-13 |
| 16 000 | 1,4428E-13  |
| 17 000 | 1,27837E-13 |
| 18 000 | 1,13268E-13 |
| 19 000 | 1,00359E-13 |
| 20 000 | 8,89216E-14 |
| 21 000 | 7,87876E-14 |
| 22 000 | 6,98085E-14 |
| 23 000 | 6,18527E-14 |
| 24 000 | 5,48036E-14 |
| 25 000 | 4,85578E-14 |
| 26 000 | 4,30239E-14 |
| 27 000 | 3,81206E-14 |
| 28 000 | 3,37762E-14 |
| 29 000 | 2,99268E-14 |
| 30 000 | 2,65162E-14 |
|        |             |

- **2.**  $t_0$  = 29 000 au millier d'années près.
- **3.** Sur le même principe qu'un affinage à la calculatrice, on complète le fichier pour obtenir le seuil  $t_0$  = 28 980 à l'année près.

| 3,00284E-14 |
|-------------|
| 3,00248E-14 |
| 3,00211E-14 |
| 3,00175E-14 |
| 3,00139E-14 |
| 3,00102E-14 |
| 3,00066E-14 |
| 3,0003E-14  |
| 2,99993E-14 |
| 2,99957E-14 |
|             |

| 28 982 | 2,99921E-14 |
|--------|-------------|
| 28 983 | 2,99884E-14 |
| 28 984 | 2,99848E-14 |
| 28 985 | 2,99812E-14 |
| 28 986 | 2,99776E-14 |
| 28 987 | 2,99739E-14 |
| 28 988 | 2,99703E-14 |
| 28 989 | 2,99667E-14 |
| 28 990 | 2,99631E-14 |

## C. Programme de recherche de seuil

```
1. import math
  def datation(C):
        1 = 1.21*10**(-4)
        C0 = 10**(-12)
        t = 0
        while C0*math.exp(-1*t) > C:
            t = t + 1000
        return t
```

```
import math
def datation(C):
    1 = 1.21 * 10 * * (-4)
    C0 = 10 * * (-12)
    t = 0
    while C0*math.exp(-1*t) > C:
        t = t + 1000
    t = t - 1000
    while C0*math.exp(-1*t) > C:
        t = t + 100
    t = t - 100
    while C0*math.exp(-1*t) > C:
        t = t + 10
    t = t - 10
    while C0*math.exp(-1*t) > C:
        t = t + 1
    return t
```

## TP 2. Critère de Cauchy

• Durée estimée : 30 min

• Objectif : Découvrir le critère de Cauchy.

1. Les limites sont nulles.

2.

| y/x   | 0,05   | 0,04    | 0,03    | 0,02    | 0,01    | 0       | -0,01   | -0,02   | -0,03   | -0,04   | -0,05  |
|-------|--------|---------|---------|---------|---------|---------|---------|---------|---------|---------|--------|
| 0,05  | 0      | -0,0009 | -0,0016 | -0,0021 | -0,0024 | -0,0025 | -0,0024 | -0,0021 | -0,0016 | -0,0009 | 0      |
| 0,04  | 0,0009 | 0       | -0,0007 | -0,0012 | -0,0015 | -0,0016 | -0,0015 | -0,0012 | -0,0007 | 0       | 0,0009 |
| 0,03  | 0,0016 | 0,0007  | 0       | -0,0005 | -0,0008 | -0,0009 | -0,0008 | -0,0005 | 0       | 0,0007  | 0,0016 |
| 0,02  | 0,0021 | 0,0012  | 0,0005  | 0       | -0,0003 | -0,0004 | -0,0003 | 0       | 0,0005  | 0,0012  | 0,0021 |
| 0,01  | 0,0024 | 0,0015  | 0,0008  | 0,0003  | 0       | -0,0001 | 0       | 0,0003  | 0,0008  | 0,0015  | 0,0024 |
| 0     | 0,0025 | 0,0016  | 0,0009  | 0,0004  | 0,0001  | 0       | 0,0001  | 0,0004  | 0,0009  | 0,0016  | 0,0025 |
| -0,01 | 0,0024 | 0,0015  | 0,0008  | 0,0003  | 0       | -0,0001 | 0       | 0,0003  | 0,0008  | 0,0015  | 0,0024 |
| -0,02 | 0,0021 | 0,0012  | 0,0005  | 0       | -0,0003 | -0,0004 | -0,0003 | 0       | 0,0005  | 0,0012  | 0,0021 |
| -0,03 | 0,0016 | 0,0007  | 0       | -0,0005 | -0,0008 | -0,0009 | -0,0008 | -0,0005 | 0       | 0,0007  | 0,0016 |
| -0,04 | 0,0009 | 0       | -0,0007 | -0,0012 | -0,0015 | -0,0016 | -0,0015 | -0,0012 | -0,0007 | 0       | 0,0009 |
| -0,05 | 0      | -0,0009 | -0,0016 | -0,0021 | -0,0024 | -0,0025 | -0,0024 | -0,0021 | -0,0016 | -0,0009 | 0      |

- **3. a)** f(0,04) f(0,05)
- **b)** Oui car x = y.
- c) Au bord de la diagonale.
- d) Que la limite est nulle, ce qui est cohérent.
- 4. On obtient dans ce cas :

| y/x   | 0,05    | 0,04    | 0,03    | 0,02    | 0,01    | 0       | -0,01   | -0,02   | -0,03   | -0,04   | -0,05   |
|-------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|
| 0,05  | 0       | 5       | 13,3333 | 30      | 80      | #DIV/0! | -120    | -70     | -53,333 | -45     | -40     |
| 0,04  | -5      | 0       | 8,33333 | 25      | 75      | #DIV/0! | -125    | -75     | -58,333 | -50     | -45     |
| 0,03  | -13,333 | -8,3333 | 0       | 16,6667 | 66,6667 | #DIV/0! | -133,33 | -83,333 | -66,667 | -58,333 | -53,333 |
| 0,02  | -30     | -25     | -16,667 | 0       | 50      | #DIV/0! | -150    | -100    | -83,333 | -75     | -70     |
| 0,01  | -80     | -75     | -66,667 | -50     | 0       | #DIV/0! | -200    | -150    | -133,33 | -125    | -120    |
| 0     | #DIV/0! |
| -0,01 | 120     | 125     | 133,333 | 150     | 200     | #DIV/0! | 0       | 50      | 66,6667 | 75      | 80      |
| -0,02 | 70      | 75      | 83,3333 | 100     | 150     | #DIV/0! | -50     | 0       | 16,6667 | 25      | 30      |
| -0,03 | 53,3333 | 58,3333 | 66,6667 | 83,3333 | 133,333 | #DIV/0! | -66,667 | -16,667 | 0       | 8,33333 | 13,3333 |
| -0,04 | 45      | 50      | 58,3333 | 75      | 125     | #DIV/0! | -75     | -25     | -8,3333 | 0       | 5       |
| -0,05 | 40      | 45      | 53,3333 | 70      | 120     | #DIV/0! | -80     | -30     | -13,333 | -5      | 0       |

Et on obtient bien d'un coté de la diagonale  $+\infty$  et de l'autre  $-\infty$ .