

1. Déterminer $\lim_{x \to -\infty} -4x^3 - 2x^2 + 4x - 1$

Correction

La limite en $-\infty$ d'une fonction polynomiale est la limite en $-\infty$ de son monôme de plus haut degré

d'où
$$\lim_{x \to -\infty} -4x^3 - 2x^2 + 4x - 1 = \lim_{x \to -\infty} -4x^3 = +\infty$$

Donc $\lim_{x \to -\infty} -4x^3 - 2x^2 + 4x - 1 = +\infty$

2. Déterminer
$$\lim_{x \to +\infty} \frac{5x^2 - x + 11}{-6x^2 + \frac{1}{2}x + \sqrt{3}}$$

Correction

La limite en $+\infty$ d'un quotient de fonctions polynomiales est la limite en $+\infty$ du quotient des monômes de plus haut degré

d'où
$$\lim_{x \to +\infty} \frac{5x^2 - x + 11}{-6x^2 + \frac{1}{2}x + \sqrt{3}} = \lim_{x \to +\infty} \frac{5x^2}{-6x^2} = \lim_{x \to +\infty} \frac{5}{-8} = -\frac{5}{6}$$

Donc
$$\lim_{x \to +\infty} \frac{5x^2 - x + 11}{-6x^2 + \frac{1}{2}x + \sqrt{3}} = -\frac{5}{6}$$

3. Déterminer
$$\lim_{\substack{x \to 4 \\ x > 4}} \frac{-2}{x - 4}$$

Correction

On sait que
$$\lim_{x \to 4} x - 4 = 0^+ \text{ car } x > 4 \text{ alors } x - 4 > 0$$

on sait que
$$\lim_{\substack{x \to 4 \\ x > 4}} x - 4 = 0^{+}$$
 car $x > 4$ alors $x - 4 > 0^{-}$
d'où $\lim_{\substack{x \to 4 \\ x > 4}} \frac{1}{x - 4} = +\infty$ donc $\lim_{\substack{x \to 4 \\ x > 4}} \frac{-2}{x - 4} = -\infty$

4. Déterminer
$$\lim_{x\to(-3)^-} \frac{x+5}{x+3}$$

Correction

On sait que
$$x < -3$$
 d'où $x + 3 < 0$

$$\lim_{\substack{x \to (-3)^{-} \\ x \to (-3)^{-}}} x + 5 = 2$$

$$\lim_{\substack{x \to (-3)^{-} \\ x \to (-3)^{-}}} x + 3 = 0^{-}$$

$$\implies \lim_{\substack{x \to (-3)^{-} \\ x \to 3}} \frac{x + 5}{x + 3} = -\infty$$

5. Interpréter graphiquement la limite de la question 4.

Correction

On sait que
$$\lim_{x \to (-3)^-} \frac{x+5}{x+3} = -\infty$$

Alors la courbe représentative de la fonction admet une asymptote verticale d'équation x = -3.