

Limites de fonctions

I Limite d'une fonction à l'infinie et Asymptote

Rappel: Intuitivement

- On dit que la fonction f admet pour limite L en $+\infty$ si f (x) est aussi proche de L que l'on veut pourvu que x soit suffisamment grand.
- On dit que la fonction f admet pour limite $+\infty$ en $+\infty$ si f (x) est aussi grand que l'on veut pourvu que x soit suffisamment grand.

Définition: Limite en l'infini

- $\lim_{x \to +\infty} f(x) = \dots$ si tout intervalle ouvert contenant L contient toutes les valeurs de f(x) dès que x est assez grand
- $\lim_{x \to +\infty} f(x) = \dots$ si tout intervalle]A; $+\infty$ [contient toutes les valeurs de f(x) dès que x est assez grand
- $\lim_{x \to +\infty} f(x) = \dots$ si tout intervalle $]-\infty$; B[contient toutes les valeurs de f(x) dès que x est assez grand

Remarque:

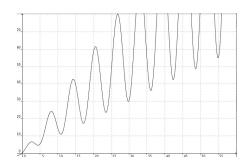
- Ces définitions sont analogues à celles données pour les limites de suites, « dès que x est assez grand » a remplacé « à partir d'un certain rang ».
- $\lim_{x \to +\infty} f(x) = L$, on dit aussi que la limite de f est L lorsque x tend vers $+\infty$



(**Ö**)

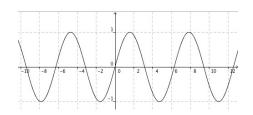
Remarque:

Une fonction qui tend vers $+\infty$ lorsquex tend vers $+\infty$ n'est pas nécessairement croissante.



Il existe des fonctions qui ne possèdent pas de limite infinie.

C'est le cas des fonctions sinusoïdales.



Limites des fonctions usuelles

$$\blacksquare \lim_{x \to +\infty} \frac{1}{x} = \dots$$

Définition: Asymptote horizontale

 $lorsque \lim_{x \to +\infty} f(x) = L,$

et elle est asymptote à la courbe en $-\infty$ lorsque $\lim_{x \to -\infty} f(x) = L$.

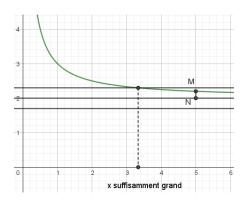
Exemple:

La fonction définie sur \mathbb{R}^* par $f(x) = 2 + \frac{1}{x}$ a pour limite 2 lorsque x tend vers $+\infty$

En effet, les valeurs de la fonction se rapprochent de 2 dès que x est assez grand.

La distance $MN = \frac{1}{x}$ tend vers zéro lorsque x tend vers $+\infty$.

Pour tout intervalle contenant 2, toutes les valeurs de f appartiennent à cet intervalle dès que x est assez grand



Il Limite d'une fonction en un réel a

Rappel: Intuitivement

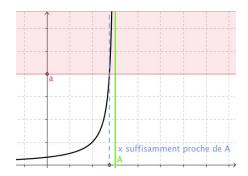
On dit que la fonction f admet pour limite $+\infty$ en a si f (x) est aussi grand que l'on veut pourvu que x soit suffisamment proche de a.

Exemple:

La fonction représentée ci-dessous a pour limite $+\infty$ lorsque x tend vers a.

En effet, les valeurs de la fonction deviennent aussi grandes que l'on souhaite dès que x est suffisamment proche de a.

Si on prend un réel A quelconque, l'intervalle $]A;+\infty[$ contient toutes les valeurs de la fonction dès que x est suffisamment proche de a.



Définition: Limite en un réel a

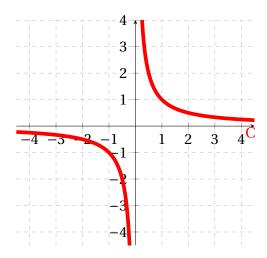
Soit a un nombre réel et f une fonction définie sur $\mathbb{R} - \{a\}$.

$$\underline{\text{Notation}} : \lim_{x \to a^{-}} f(x) = \lim_{x \to a, \ x < a} f(x) = L \text{ (L peut être aussi } \pm \infty \text{)}$$

Notation:
$$\lim_{x \to a^+} f(x) = \lim_{x \to a, x > a} f(x) = L$$
 (L peut être aussi $\pm \infty$)

• Dire que f admet une limite en a, lorsque les limites à gauche et à droite sont égales.

Exemple : Etudions la fonction $f(x) = \frac{1}{x}$ lorsque x prend des valeurs de plus en plus proches de zéro.



• Cas x > 0: Pour tout M > 0, $\frac{1}{x} > M$ \Leftrightarrow

Ainsi pour tout nombre M > 0, l'intervalle M; $+\infty$ [contient tous les nombres f(x) dès que $x \in \left[0, \frac{1}{M}\right]$].

On note : $\lim_{x \to 0^+} f(x) = \dots$

Ainsi pour tout nombre M < 0, l'intervalle $]-\infty$; M[contient tous les nombres f(x) dès que $x \in \left] \frac{1}{M} \right]$; $0 \in \mathbb{R}$. On note $\lim_{x \to 0^-} f(x) = \dots$

Attention : cette fonction de limite en zéro car $\lim_{x\to 0^-} f(x)$ $\lim_{x\to 0^+} f(x)$

Définition: Asymptote verticale

On dit que la droite d'équation x = L est une

à la courbe lorsque $\lim_{x \to L} f(x) = \pm \infty$

Exemple: Pour la fonction $f(x) = \frac{1}{x}$; la droite x = 0 est asymptote verticale à la courbe.

III Théorèmes généraux sur les limites

L et L' sont des réels, α est un réel qui peut être remplacé par $+\infty$ ou $-\infty$

Limite d'une somme

$\lim_{x \to \alpha} f(x) =$	L	L	L	+∞	$-\infty$	+∞
$\lim_{x \to \alpha} g(x) =$	L'	+∞	$-\infty$	+∞	$-\infty$	$-\infty$
$\lim_{x \to \alpha} (f(x) + g(x)) =$						

Limite d'un produit

$\lim_{x \to \alpha} f(x) =$	L	L>0	L < 0	L > 0	L < 0	+∞	-∞	+∞	0
$\lim_{x \to \alpha} g(x) =$	L'	+∞	+∞	$-\infty$	$-\infty$	+∞	$-\infty$	$-\infty$	+∞
									$ou-\infty$
$\lim_{x \to \alpha} (f(x) g(x)) =$									F.I.

Limite d'un quotient

$\lim_{x \to \alpha} f(x) =$	L	L	L > 0	L < 0	L > 0	L < 0	0
			ou +∞	ou −∞	ou $+\infty$	ou −∞	
$\lim_{x \to \alpha} g(x) =$	$L' \neq 0$	+∞ ou	0 avec	0 avec	0 avec	0 avec	0
		$-\infty$	g(x) > 0	g(x) > 0	g(x) < 0	g(x) < 0	
$\lim_{x \to \alpha} \frac{f(x)}{g(x)} =$							

$\lim_{x \to \alpha} f(x) =$	+∞	+∞	$-\infty$	$-\infty$	$+\infty$ ou $-\infty$
$\lim_{x \to \alpha} g(x) =$	L'>0	L' < 0	L'>0	L' < 0	+∞ ou −∞
$ \lim_{x \to \alpha} \frac{f(x)}{g(x)} = $					

Exemple: Déterminer $\lim_{x \to -\infty} (x-5)(3+x^2)$

.....

 $\underline{ {\sf Remarque}:} \ {\sf Comme} \ {\sf pour} \ {\sf les} \ {\sf suites}, \ {\sf on} \ {\sf rappelle} \ {\sf que} \ {\sf les} \ {\sf quatre} \ {\sf formes} \ {\sf indéterminées} \ {\sf sont}, \ {\sf par} \ {\sf abus} \ {\sf d'écriture}:$

"
$$\infty - \infty$$
", " $0 \times \infty$ ", " $\frac{\infty}{\infty}$ " et " $\frac{0}{0}$ "

<u>Méthode</u>: Lever une forme indéterminée sur les fonctions polynômes et rationnelles Déterminer les limites suivantes :

a) $\lim_{x \to +\infty} (-3 \ x^3 + 2x^2 - 6x + 1)$	b) $\lim_{x \to -\infty} \frac{3x^2 + 2}{4x^2 - 1}$	c) $\lim_{x \to 2^+} \frac{x-3}{2-x}$

IV Fonctions composées

Définition: Définition d'une fonction composée

f est une fonction définie sur un intervalle J

et g une fonction définie sur un intervalle I tel que, pour tout réel x de I, g(x) appartient à J.

La fonction composée g suivie de f est la fonction hdéfinie sur I par h(x) = f(g(x))

 $h: \quad \mathbf{I} \quad \rightarrow \quad \mathbf{J} \quad \rightarrow \quad \mathbb{R}$

 $x \rightarrow g(x) \rightarrow f(g(x))$

Remarque : On écrit $h = f \circ g$, on lit "f rond g".

Exemple : h est définie sur] $-\infty$; 1] par $h(x) = \sqrt{1-x}$

Théorème: Théorème des limites d'une fonction composée

Soient a, b, c des réels ou $\pm \infty$

Si $\lim_{x \to a} u(x) = b$ et si $\lim_{x \to b} v(x) = c$ alors $\lim_{x \to a} v(u(x)) = c$

Exemple : h est définie sur $]-\infty$; 1] par $h(x) = \sqrt{1-x}$

V Théorèmes de comparaison

Théorème: Théorème "des gendarmes"

f, get h sont trois fonctions définies sur I =]A; $+\infty[$ (ou $I = \mathbb{R}$), h désigne un nombre réel.

Si, pour tout $x \in I$, $g(x) \le f(x) \le h(x)$ et si g et h ont la même limite l en $+\infty$

Alors
$$\lim_{x \to +\infty} f(x) = \dots$$

Démonstration :

Par hypothèse, g et h ont la même limite l en l'infini.

Considérons un intervalle ouvert J contenant I,

- il contient tous les éléments g(x) dès que x > a,
- il contient tous les éléments h(x) dès que x > b.

Notons c le plus des deux nombres a et b.

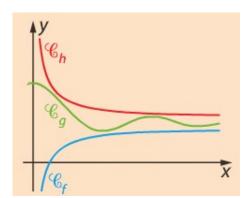
Alors J contient donc tous les éléments g(x) et h(x) dès que

Comme pour tout $x \in I$, $g(x) \le f(x) \le h(x)$,

On en déduit que J contient tous les éléments f(x) dès que x > c.

Ceci est vrai pour tout intervalle ouvert contenant l

donc
$$\lim_{x \to +\infty} f(x) = \dots$$



Théorème: Théorème de comparaison à l'infini

f et gsont deux fonctions définies sur I =]A; $+\infty[$ (ou $I = \mathbb{R}$)

Si, pour tout $x \in I$, $f(x) \ge g(x)$ et si $\lim_{x \to +\infty} g(x) = +\infty$ alors $\lim_{x \to +\infty} f(x) = \dots$

Si, pour tout $x \in I$, $f(x) \le g(x)$ et si $\lim_{x \to +\infty} g(x) = -\infty$ alors $\lim_{x \to +\infty} f(x) = \dots$

Remarque : Ce théorème s'adapte aux comparaisons en $-\infty$

Démonstration :

Par hypothèse, tout intervalle de la forme M; $+\infty$ [contient toutes les valeurs g(x) dès que x est assez grand dans M.

Alors il contient aussi toutes les valeurs f(x) car $f(x) \ge g(x)$ ainsi $\lim_{x \to +\infty} f(x) = +\infty$.

Exemp	les :
_,	

Déterminer les limites suivantes :			
$ \lim_{x \to +\infty} (x + \sin x) $	■ <u>l</u>	$\lim_{x \to \infty} \frac{x \cos x}{x^2 + 1}$	
			• • • • • • • •
			• • • • • • • • •

VI Limites liées à la fonction exponentielle

Limites

- $\blacksquare \lim_{x \to +\infty} e^x = \dots$
- $\blacksquare \lim_{x \to -\infty} e^x = \dots$

Démonstration :

• Soit $f(x) = e^x - x$ pour tout $x \in \mathbb{R}$

Alors $f'(x) = \dots$ pour tout $x \in \mathbb{R}$.

Comme f'(0) = 0

et que la fonction $x \to e^x$ est strictement croissante sur $\mathbb R$

De plus f(0) = 1 , f admet

Donc pour tout $x \in \mathbb{R}$, $f(x) \ge 1$, soit f(x) > 0 et donc e^x

D'après le théorème de comparaison, comme $\lim_{x\to +\infty} x = +\infty$ alors $\lim_{x\to +\infty} e^x = \dots$

Autres limites

 $\lim_{x \to +\infty} \frac{e^x}{x} = +\infty$

Démonstration :

Soit f la fonction définie sur R⁺ par $f(x) = e^x - \frac{x^2}{2}$

f est dérivable sur R^+ $f'(x) = \dots$

f' est dérivable sur R^+ $f''(x) = \dots$

On a montré que pour tout $x \in \mathbb{R}^+$, $e^x > 1$ donc f''(x) d'où f' est croissante sur \mathbb{R}^+

On dresse alors le tableau de variations :

x	0	+∞
Signe de f''		
Variations de f'		
Signe de $f'(x)$		
Variation de f		

De plus, $f'(0) = \dots$, donc f'(x) = f est

Or f(0) = donc pour tout $x \in \mathbb{R}^+$, $f(x) \ge f(0) = 1$

Donc $e^x - \frac{x^2}{2}$ soit e^x $\frac{x^2}{2}$

et pour tout x > 0,

Comme $\lim_{x \to +\infty} \frac{x}{2} = \dots$,

D'après le théorème de comparaison, $\lim_{x\to+\infty}\frac{e^x}{x}=\dots$

- $\blacksquare \lim_{x \to +\infty} \frac{e^x}{x} = \dots \qquad \text{donc} \qquad \lim_{x \to +\infty} \frac{1}{\frac{e^x}{x}} = \dots \qquad \text{soit} \qquad \lim_{x \to +\infty} \frac{x}{e^x} = \dots$
- On pose $f(x) = e^x$ alors $\lim_{x \to 0} \frac{e^x 1}{x} = \dots$

VII Limites liées à la fonction logarithme népérien

Propriété 1: Limites aux bornes de la fonction ln

1.
$$\lim_{x \to +\infty} \ln x = \dots$$

2.
$$\lim_{\substack{x \to 0 \\ x > 0}} \ln x = \dots$$

Démonstrations

1. Pour tout réel A > 0, on a $\ln x > A \iff x > \dots$

On en déduit que $\lim_{x \to \dots} \ln x = \dots$

2. Pour tout réel x > 0, on pose $y = \frac{1}{x}$. Ainsi $x = \dots$

On a

$$\left. \begin{array}{l} \lim_{\substack{x \to 0 \\ x > 0}} \frac{1}{x} = \dots \\ \lim_{\substack{y \to \dots \to \infty}} -\ln y = \dots \end{array} \right\} \Longrightarrow \lim_{\substack{x \to \infty \\ x \to 0}} -\ln \frac{1}{x} = \dots$$

Or $\ln x = \ln \frac{1}{x}$ donc $\lim_{\substack{x \to 0 \\ x > 0}} \ln x =$

Propriété: Croissances comparées

1.
$$\lim_{x \to +\infty} \frac{\ln x}{x} = 0$$

$$2. \lim_{x \to +\infty} \frac{\ln x}{x^n} = 0 \text{ avec } n \in \mathbb{N}$$

3.
$$\lim_{x\to 0} x \ln x = 0$$

4.
$$\lim_{\substack{x\to 0\\x>0}} x^n \ln x = 0$$
 avec $n \in \mathbb{N}$

Démonstration :

1. Pour tout x > 0, on pose $y = \ln x$. On dans ce cas $e^y = \dots$

 $\begin{vmatrix}
\lim_{x \to \infty} \ln x = \dots \\
\lim_{y \to \infty} \frac{e^y}{y} = \dots
\end{vmatrix}
\Rightarrow \lim_{x \to \infty} \frac{e^{\ln x}}{\ln x} = \dots \\
\Rightarrow \lim_{x \to +\infty} \frac{e^{\ln x}}{\ln x} = \dots \\
\Rightarrow \lim_{x \to +\infty} \frac{\ln x}{\ln x} = \dots \\
\Rightarrow \lim_{x \to +\infty} \frac{\ln x}{\ln x} = \dots \\
\Rightarrow \lim_{x \to +\infty} \frac{\ln x}{\ln x} = \dots \\
\Rightarrow \lim_{x \to +\infty} \frac{\ln x}{\ln x} = \dots \\
\Rightarrow \lim_{x \to +\infty} \frac{\ln x}{\ln x} = \dots \\
\Rightarrow \lim_{x \to +\infty} \frac{\ln x}{\ln x} = \dots \\
\Rightarrow \lim_{x \to +\infty} \frac{\ln x}{\ln x} = \dots \\
\Rightarrow \lim_{x \to +\infty} \frac{\ln x}{\ln x} = \dots \\
\Rightarrow \lim_{x \to +\infty} \frac{\ln x}{\ln x} = \dots \\
\Rightarrow \lim_{x \to +\infty} \frac{\ln x}{\ln x} = \dots \\
\Rightarrow \lim_{x \to +\infty} \frac{\ln x}{\ln x} = \dots \\
\Rightarrow \lim_{x \to +\infty} \frac{\ln x}{\ln x} = \dots \\
\Rightarrow \lim_{x \to +\infty} \frac{\ln x}{\ln x} = \dots \\
\Rightarrow \lim_{x \to +\infty} \frac{\ln x}{\ln x} = \dots \\
\Rightarrow \lim_{x \to +\infty} \frac{\ln x}{\ln x} = \dots \\
\Rightarrow \lim_{x \to +\infty} \frac{\ln x}{\ln x} = \dots \\
\Rightarrow \lim_{x \to +\infty} \frac{\ln x}{\ln x} = \dots \\
\Rightarrow \lim_{x \to +\infty} \frac{\ln x}{\ln x} = \dots \\
\Rightarrow \lim_{x \to +\infty} \frac{\ln x}{\ln x} = \dots \\
\Rightarrow \lim_{x \to +\infty} \frac{\ln x}{\ln x} = \dots \\
\Rightarrow \lim_{x \to +\infty} \frac{\ln x}{\ln x} = \dots \\
\Rightarrow \lim_{x \to +\infty} \frac{\ln x}{\ln x} = \dots \\
\Rightarrow \lim_{x \to +\infty} \frac{\ln x}{\ln x} = \dots \\
\Rightarrow \lim_{x \to +\infty} \frac{\ln x}{\ln x} = \dots \\
\Rightarrow \lim_{x \to +\infty} \frac{\ln x}{\ln x} = \dots \\
\Rightarrow \lim_{x \to +\infty} \frac{\ln x}{\ln x} = \dots \\
\Rightarrow \lim_{x \to +\infty} \frac{\ln x}{\ln x} = \dots \\
\Rightarrow \lim_{x \to +\infty} \frac{\ln x}{\ln x} = \dots \\
\Rightarrow \lim_{x \to +\infty} \frac{\ln x}{\ln x} = \dots \\
\Rightarrow \lim_{x \to +\infty} \frac{\ln x}{\ln x} = \dots \\
\Rightarrow \lim_{x \to +\infty} \frac{\ln x}{\ln x} = \dots \\
\Rightarrow \lim_{x \to +\infty} \frac{\ln x}{\ln x} = \dots \\
\Rightarrow \lim_{x \to +\infty} \frac{\ln x}{\ln x} = \dots \\
\Rightarrow \lim_{x \to +\infty} \frac{\ln x}{\ln x} = \dots$

- 2. Pour tout n > 1 avec $n \in \mathbb{N}$, on a $\frac{\ln x}{x^n} = \frac{1}{x^{n-1}} \times \frac{\ln x}{x}$ comme $\lim_{x \to +\infty} \frac{1}{x^{n-1}} = \dots$ et $\lim_{x \to +\infty} \frac{\ln x}{x} = \dots$ alors par produit de limites, on obtient $\lim_{x \to +\infty} \frac{\ln x}{x^n} = \dots$
- 3. De la même façon, pour tout x > 0, on pose $y = \ln x$.

On dans ce cas $e^y = \dots$

$$\left. \begin{array}{l} \lim_{n \to \infty} \ln x = \dots \\ \lim_{n \to \infty} \dots \\ = \dots \end{array} \right\} \Rightarrow \lim_{n \to \infty} \dots = \dots \qquad \text{ainsi } \lim_{\substack{x \to 0 \\ x > 0}} x \ln x = \dots$$

4. Pour tout n > 1 avec $n \in \mathbb{N}$, on a $x^n \ln x = x^{n-1} \times x \ln x$

comme $\lim_{\substack{x \to 0 \\ x > 0}} x^{n-1} = \dots$ et $\lim_{\substack{x \to 0 \\ x > 0}} x \ln x = \dots$ alors par produit de limites, on obtient $\lim_{\substack{x \to 0 \\ x > 0}} x^n \ln x = \dots$

Propriété: Limite et taux d'accroissement

$$\lim_{x \to 0} \frac{\ln(1+x)}{x} = \dots$$

Démonstration :

La fonction ln est dérivable en 1, donc par définition

$$\ln'(1) = \lim_{h \to 0} \dots$$

Comme d'autre part
$$\ln'(1) = \dots$$
, on a $\lim_{h \to 0} \frac{\ln(1+h)}{h} = \dots$

Méthode: Souvent dans le cas d'une F.I. faisant intervenir la fonction ln, on essaie de

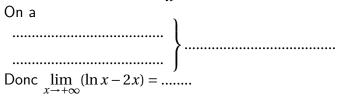
- factoriser et faire apparaître des limites déjà connues;
- procéder à un changement de variable.

Exemple : Déterminer les limites suivantes :

1.
$$\lim_{x \to +\infty} (\ln x - 2x)$$

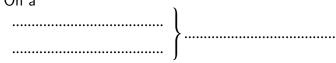
Pour tout réel x > 0, $\ln x - 2x = \dots$

Or par propriété, $\lim_{x \to +\infty} \frac{\ln x}{x} = \dots$



2.
$$\lim_{x \to +\infty} x \ln \left(1 + \frac{1}{x} \right)$$

Pour tout réel x > 0, on pose $y = \dots$



Ainsi
$$\lim_{x \to +\infty} x \ln\left(1 + \frac{1}{x}\right) = \dots$$

Exemple : Soit f la fonction définie sur $]0;+\infty[$ par $f(x)=\ln\left(\frac{x+2}{x^2}\right)$. Étudier les limites de f aux bornes de son ensemble de définition.

• Limite en $+\infty$

Pour tout
$$x > 0$$
, on a $\frac{x+2}{x^2} = \frac{1}{x} + \frac{2}{x^2}$

$$\Rightarrow \lim_{x \to +\infty} \frac{x+2}{x^2} = \dots$$

On pose
$$y = \frac{x+2}{x^2}$$

$$\begin{vmatrix}
\lim_{x \to \dots \\ y \to \dots}
\end{vmatrix} \Rightarrow \dots$$

Limite en 0

On va utiliser un théorème de comparaison. En effet, pour tout x > 0, on a $\frac{x+2}{x^2} > \frac{x}{x^2} = \frac{1}{x}$

donc $f(x) = \ln\left(\frac{x+2}{x}\right)$ $\ln\left(\frac{1}{x}\right) =$

Comme $\lim_{x\to 0^+} \ln x =$, alors $\lim_{x\to 0^+} -\ln x =$

donc par comparaison $\lim_{x\to 0^+} f(x) =$