

Limites de fonctions

I Limite d'une fonction à l'infinie et Asymptote

Rappel: Intuitivement

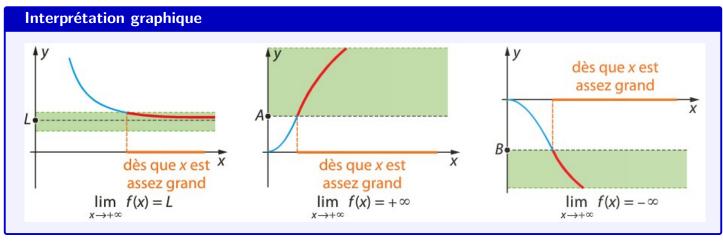
- On dit que la fonction f admet pour limite L en $+\infty$ si f (x) est aussi proche de L que l'on veut pourvu que x soit suffisamment grand.
- On dit que la fonction f admet pour limite $+\infty$ en $+\infty$ si f (x) est aussi grand que l'on veut pourvu que x soit suffisamment grand.

Définition: Limite en l'infini

- $\lim_{x \to +\infty} f(x) = L$ si tout intervalle ouvert contenant L contient toutes les valeurs de f(x) dès que x est assez grand
- $\lim_{x \to +\infty} f(x) = +\infty$ si tout intervalle]A; $+\infty$ [contient toutes les valeurs de f(x) dès que x est assez grand
- $\lim_{x \to +\infty} f(x) = -\infty$ si tout intervalle $]-\infty$; B[contient toutes les valeurs de f(x) dès que x est assez grand

Remarque:

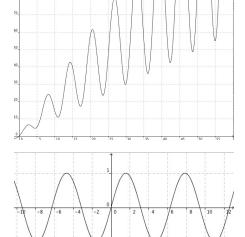
- Ces définitions sont analogues à celles données pour les limites de suites, "dès que x est assez grand" a remplacé "à partir d'un certain rang".
- $\lim_{x \to +\infty} f(x) = L$, on dit aussi que la limite de f est L lorsque x tend vers $+\infty$



Ð

Remarque :

Une fonction qui tend vers $+\infty$ lorsquex tend vers $+\infty$ n'est pas nécessairement croissante.



Il existe des fonctions qui ne possèdent pas de limite infinie. C'est le cas des fonctions sinusoïdales.

Limites des fonctions usuelles

$$\lim_{x \to -\infty} x^3 = -\infty$$

.

Définition: Asymptote horizontale

On dit que la droite d'équation y=L est une **asymptote horizontale** à la courbe en $+\infty$ lorsque $\lim_{x\to +\infty} f(x)=L$, et elle est asymptote à la courbe en $-\infty$ lorsque $\lim_{x\to -\infty} f(x)=L$.

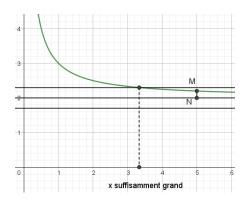
Exemple:

La fonction définie sur \mathbb{R}^* par $f(x) = 2 + \frac{1}{x}$ a pour limite 2 lorsque x tend vers $+\infty$

En effet, les valeurs de la fonction se rapprochent de 2 dès que x est assez grand.

La distance $MN = \frac{1}{x}$ tend vers zéro lorsque x tend vers $+\infty$.

Pour tout intervalle contenant 2, toutes les valeurs de f appartiennent à cet intervalle dès que x est assez grand



Il Limite d'une fonction en un réel a

Rappel: Intuitivement

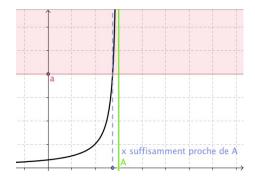
On dit que la fonction f admet pour limite $+\infty$ en a si f (x) est aussi grand que l'on veut pourvu que x soit suffisamment proche de a.

Exemple:

La fonction représentée ci-dessous a pour limite $+\infty$ lorsque x tend vers a.

En effet, les valeurs de la fonction deviennent aussi grandes que l'on souhaite dès que x est suffisamment proche de a.

Si on prend un réel A quelconque, l'intervalle $]A; +\infty[$ contient toutes les valeurs de la fonction dès que x est suffisamment proche de a.



Définition: Limite en un réel a

Soit a un nombre réel et f une fonction définie sur $\mathbb{R} - \{a\}$.

- Dire que f admet une limite à gauche en a, signifie que lorsque x tend vers a par valeurs inférieures, f tend vers cette limite : $\lim_{x \to a^-} f(x) = \lim_{x \to a^-} f(x) = \operatorname{L}\left(\operatorname{L} \text{ peut être aussi } \pm \infty\right)$
- Dire que f admet une limite à droite en a, signifie que lorsque x tend vers a par valeurs supérieures, f tend vers cette limite : $\lim_{x \to a^+} f(x) = \lim_{x \to a, \ x > a} f(x) = \operatorname{L}\left(\operatorname{L} \text{ peut être aussi } \pm \infty\right)$
- Dire que f admet une limite en a, lorsque les limites à gauche et à droite sont égales.

Exemple : Etudions la fonction $f(x) = \frac{1}{x}$ lorsque x prend des valeurs de plus en plus proches de zéro.

• Cas x > 0:

Pour tout M > 0, $\frac{1}{x} > M$ \Leftrightarrow $x < \frac{1}{M}$ Ainsi pour tout nombre M > 0, l'intervalle M; $+\infty$ [contient tous les nombres f(x) dès

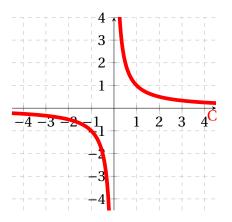
que $x \in \left[0; \frac{1}{M}\right]$. On note : $\lim_{x \to 0^+} f(x) = +\infty$

• Cas x < 0:

Pour tout M < 0, $\frac{1}{x} < M$ \Leftrightarrow $x > \frac{1}{M}$ Ainsi pour tout nombre M < 0, l'intervalle

 $]-\infty$; M[contient tous les nombres f(x) dès

que $x \in \left[\frac{1}{M} \right]$; $0 \in \mathbb{N}$ On note : $\lim_{x \to 0^{-}} f(x) = -\infty$



Attention : cette fonction n'a pas de limite en zéro car $\lim_{x\to 0^-} f(x) \neq \lim_{x\to 0^+} f(x)$

Définition: Asymptote verticale

On dit que la droite d'équation x = L est une **asymptote verticale** à la courbe

$$lorsque \lim_{x \to L} f(x) = \pm \infty$$

Exemple: Pour la fonction $f(x) = \frac{1}{x}$; la droite x = 0 est asymptote verticale à la courbe.

III Théorèmes généraux sur les limites

L et L' sont des réels, α est un réel qui peut être remplacé par $+\infty$ ou $-\infty$

Limite d'une somme

$\lim_{x \to \alpha} f(x) =$	L	L	L	+∞	-∞	+∞
$\lim_{x \to \alpha} g(x) =$	L'	+∞	$-\infty$	+∞	$-\infty$	-∞
$\lim_{x \to \alpha} (f(x) + g(x)) =$	L+L'	+∞	$-\infty$	+∞	$-\infty$	F.I.*

Limite d'un produit

$\lim_{x \to \alpha} f(x) =$	L	L>0	L < 0	L>0	L < 0	+∞	-∞	+∞	0
$\lim_{x \to \alpha} g(x) =$	L'	+∞	+∞	-∞	-∞	+∞	-∞	-∞	+∞
									ou-∞
$\lim_{x \to \alpha} (f(x) g(x)) =$	$L \times L'$	+∞	$-\infty$	-∞	+∞	+∞	+∞	$-\infty$	F.I.

Limite d'un quotient

$\lim_{x \to \alpha} f(x) =$	L	L	$L > 0$ ou $+\infty$	L < 0 ou −∞	L > 0 ou +∞	L < 0 ou −∞	0
$\lim_{x \to \alpha} g(x) =$	L' ≠ 0	+∞ ou -∞	0 avec $g(x) > 0$	0 avec $g(x) > 0$	0 avec $g(x) < 0$	0 avec $g(x) < 0$	0
$\lim_{x \to \alpha} \frac{f(x)}{g(x)} =$	$\frac{\mathrm{L}}{\mathrm{L}'}$	0	+∞	-∞	$-\infty$	+∞	F.I.

$\lim_{x \to \alpha} f(x) =$	+∞	+∞	-∞	-∞	+∞ ou −∞
$\lim_{x \to \alpha} g(x) =$	L' > 0	L' < 0	L' > 0	L' < 0	+∞ ou −∞
$ \lim_{x \to \alpha} \frac{f(x)}{g(x)} = $	+∞	-∞	-∞	+∞	F.I.

Exemple: Déterminer $\lim_{x \to -\infty} (x-5)(3+x^2)$

On sait que
$$\lim_{x \to -\infty} x - 5 = -\infty \text{ et}$$
 et
$$\lim_{x \to -\infty} 3 + x^2 = +\infty$$
 d'après la règle sur la limite d'un produit
$$\lim_{x \to -\infty} (x - 5) \left(3 + x^2\right) = +\infty$$

Remarque : Comme pour les suites, on rappelle que les quatre formes indéterminées sont, par abus d'écriture :

"
$$\infty - \infty$$
", " $0 \times \infty$ ", " $\frac{\infty}{\infty}$ " et " $\frac{0}{0}$ "

Méthode : Lever une forme indéterminée sur les fonctions polynômes et rationnelles

Déterminer les limites suivantes :

a)
$$\lim_{x \to +\infty} (-3 \ x^3 + 2x^2 - 6x + 1)$$

c)
$$\lim_{x \to 2^+} \frac{x-3}{2-x}$$

b)
$$\lim_{x \to -\infty} \frac{3x^2 + 2}{4x^2 - 1}$$

d)
$$\lim_{x \to 5^{-}} \frac{\sqrt{x-1}-3}{x-5}$$

Après factorisation, conjugué....

a)
$$\lim_{x \to +\infty} (-3 x^3 + 2x^2 - 6x + 1) = -\infty$$

b) $\lim_{x \to -\infty} \frac{3x^2 + 2}{4x^2 - 1} = \frac{3}{4}$

c)
$$\lim_{x \to 2^+} \frac{x-3}{2-x} = +\infty$$

b)
$$\lim_{x \to -\infty} \frac{3x^2 + 2}{4x^2 - 1} = \frac{3}{4}$$

d)
$$\lim_{x \to 5} \frac{\sqrt{x-1}-3}{x-5} = +\infty$$

IV Fonctions composées

Définition: Fonction composée

f est une fonction définie sur un intervalle J

et g une fonction définie sur un intervalle I tel que, pour tout réel x de l, g(x) appartient à J.

La fonction composée g suivie de f est la fonction hdéfinie sur l par h(x) = f(g(x))

$$h: \quad I \quad \rightarrow \quad \quad J \quad \quad \rightarrow \quad \quad \mathbb{R}$$

$$x \rightarrow g(x) \rightarrow f(g(x))$$

Remarque : On écrit $h = f \circ g$, on lit "f rond g".

Exemple : h est définie sur $]-\infty$; 1] par $h(x) = \sqrt{1-x}$

Pour calculer h(x), on calcule d'abord 1-x puis la racine carrée de ce réel.

On définit $g: x \to 1-x$

puis
$$f: X \to \sqrt{X}$$

Alors h(x) = f(g(x))

Donc

$$h:]-\infty; 1] \rightarrow [0;+\infty[\rightarrow \mathbb{R}]$$

$$x \rightarrow 1-x \rightarrow \sqrt{1-x}$$

Théorème: Théorème des limites d'une fonction composée

Soient a, b, c des réels ou $\pm \infty$

Si
$$\lim_{x \to a} u(x) = b$$
 et si $\lim_{x \to b} v(x) = c$ alors $\lim_{x \to a} v(u(x)) = c$

Exemple : h est définie sur $]-\infty$; 1] par $h(x) = \sqrt{1-x}$

On a
$$\lim_{x \to -\infty} (1 - x) = +\infty$$

et $\lim_{X \to +\infty} \sqrt{X} = +\infty$

et
$$\lim_{X \to +\infty} \sqrt{X} = +\infty$$

Donc
$$\lim_{x \to -\infty} h(x) = +\infty$$

V Théorèmes de comparaison

Théorème: Théorème "des gendarmes"

f, get h sont trois fonctions définies sur I =]A; $+\infty[$ (ou $I = \mathbb{R}$), l désigne un nombre réel.

Si, pour tout $x \in I$, $g(x) \le f(x) \le h(x)$ et si g et h ont la même limite l en $+\infty$

Alors $\lim_{x \to +\infty} f(x) = l$

Démonstration :

Par hypothèse, g et h ont la même limite l en l'infini.

Considérons un intervalle ouvert J contenant I,

- il contient tous les éléments g(x) dès que x > a,
- il contient tous les éléments h(x) dès que x > b.

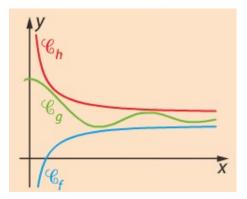
Notons c le plus grand des deux nombres a et b.

Alors J contient donc tous les éléments g(x) et h(x) dès que x > c.

Comme pour tout $x \in I$, $g(x) \le f(x) \le h(x)$,

On en déduit que J contient tous les éléments f(x) dès que x > c.

Ceci est vrai pour tout intervalle ouvert contenant l donc $\lim_{x \to +\infty} f(x) = l$.



Théorème: Théorème de comparaison à l'infini

f et gsont deux fonctions définies sur I =]A; $+\infty[$ (ou $I = \mathbb{R}$)

Si, pour tout $x \in I$, $f(x) \ge g(x)$ et si $\lim_{x \to +\infty} g(x) = +\infty$ alors $\lim_{x \to +\infty} f(x) = +\infty$

Si, pour tout $x \in I$, $f(x) \le g(x)$ et si $\lim_{x \to +\infty} g(x) = -\infty$ alors $\lim_{x \to +\infty} f(x) = -\infty$

Remarque : Ce théorème s'adapte aux comparaisons en $-\infty$

<u>Démonstration</u>: Par hypothèse, tout intervalle de la forme]M; $+\infty[$ contient toutes les valeurs g(x) dès que x est assez grand dans I.

Alors il contient aussi toutes les valeurs f(x) car $f(x) \ge g(x)$ ainsi $\lim_{x \to +\infty} f(x) = +\infty$.

Exemples:

Déterminer les limites suivantes :

$$= \lim_{x \to +\infty} (x + \sin x)$$

$$\lim_{x \to -\infty} \frac{x \cos x}{x^2 + 1}$$

$$= \lim_{x \to +\infty} (x + \sin x)$$

 $\lim_{x \to +\infty} (x + \sin x)$ Comme $\lim_{x \to +\infty} \sin x$ n'existe pas.

Alors sous la forme donnée, la limite cherchée est indéterminée.

Levons l'indétermination :

Pour tout x, $-1 \le \sin x$ alors $x - 1 \le x + \sin x$

Or
$$\lim_{x \to +\infty} (x-1) = +\infty$$

D'après le théorème de comparaison $\lim_{x \to +\infty} (x + \sin x) = +\infty$

■
$$\lim_{x \to -\infty} \frac{x \cos x}{x^2 + 1}$$
 Comme $\lim_{x \to +\infty} \cos x$ n'existe pas.

Alors sous la forme donnée, la limite cherchée est indéterminée.

Levons l'indétermination :

Pour tout x, $-1 \le \cos x \le 1$ alors $-x \le x \cos x \le x$ car x > 0

Comme
$$x^2 + 1 > 0$$

Alors
$$-\frac{x}{x^2+1} \le \frac{x \cos x}{x^2+1} \le \frac{x}{x^2+1}$$

Ou encore
$$-\frac{x}{x^2} \le -\frac{x}{x^2 + 1} \le \frac{x \cos x}{x^2 + 1} \le \frac{x}{x^2 + 1} \le \frac{x}{x^2}$$

$$-\frac{1}{x} \le \frac{x \cos x}{x^2 + 1} \le \frac{1}{x}$$

Or
$$\lim_{x \to +\infty} - \frac{1}{x} = \lim_{x \to +\infty} \frac{1}{x} = 0$$

D'après le théorème de comparaison
$$\lim_{x\to+\infty} \frac{x\cos x}{x^2+1} = 0$$

VI Limites liées à la fonction exponentielle

Limites

Démonstration :

• Soit $f(x) = e^x - x$ pour tout $x \in \mathbb{R}$

Alors $f'(x) = e^x - 1$ pour tout $x \in \mathbb{R}$.

Comme f'(0) = 0

et que la fonction $x \to e^x$ est strictement croissante sur \mathbb{R}

alors sur $R^ e^x \le 1$ $e^x - 1 \le 0$ $f'(x) \le 0$ alors f est décroissante sur R^-

sur R^+ $e^x \ge 1$ $e^x - 1 \ge 0$ $f'(x) \ge 0$ alors f est décroissante sur \mathbb{R}^+

De plus f(0) = 1, f admet un minimum en zéro qui vaut 1.

Donc pour tout $x \in \mathbb{R}$, $f(x) \ge 1$, soit f(x) > 0 et donc $e^x > x$

D'après le théorème de comparaison, comme $\lim_{x\to +\infty} x = +\infty$ alors $\lim_{x\to +\infty} e^x = +\infty$

Autres limites

Démonstration :

• Soit f la fonction définie sur R^+ par $f(x) = e^x - \frac{x^2}{2}$

f est dérivable sur R^+ $f'(x) = e^x - x$

f' est dérivable sur R^+ $f''(x) = e^x - 1$

On a montré que pour tout $x \in \mathbb{R}^+$, $e^x > 1$ donc $f''(x) \ge 0$ et f' est croissante sur \mathbb{R}^+

On dresse alors le tableau de variations :

x	0 +∞
Signe de f''	+
Variations de f'	1 +∞
Signe de $f'(x)$	+
Variation de f	1 +∞

De plus, f'(0) = 1 , donc $f'(x) \ge 0$ et f est croissante sur \mathbb{R}^+

Or f(0) = 1 donc pour tout $x \in \mathbb{R}^+$, $f(x) \ge f(0) = 1 > 0$

Donc
$$e^x - \frac{x^2}{2} > 0$$
 soit $e^x > \frac{x^2}{2}$ et pour tout $x > 0$, $\frac{e^x}{x} > \frac{x}{2}$

Comme $\lim_{x \to +\infty} \frac{x}{2} = +\infty$,

D'après le théorème de comparaison, $\lim_{x \to +\infty} \frac{e^x}{x} = +\infty$

• On pose
$$f(x) = e^x$$
 alors $\lim_{x \to 0} \frac{e^x - 1}{x} = \lim_{x \to 0} \frac{e^x - e^0}{x - 0} = f'(0) = 1$ (définition du nombre dérivé)

VII Limites liées à la fonction logarithme népérien

Propriété: Limites aux bornes de la fonction ln

1.
$$\lim_{x \to +\infty} \ln x = +\infty$$

$$2. \lim_{\substack{x \to 0 \\ x > 0}} \ln x = -\infty$$

Démonstration :

- 1. Pour tout réel A > 0, on a $\ln x > A \iff x > e^A$. On en déduit que $\lim_{x \to +\infty} \ln x = +\infty$.
- 2. Pour tout réel x > 0, on pose $y = \frac{1}{x}$. Ainsi $x = \frac{1}{y}$.

On a

$$\left| \lim_{\substack{x \to 0 \\ x > 0}} \frac{1}{x} = +\infty \right|$$

$$\left| \lim_{\substack{y \to +\infty \\ x > 0}} -\ln y = -\infty \right|$$

$$\Rightarrow \lim_{\substack{x \to 0 \\ x > 0}} -\ln \frac{1}{x} = -\infty$$

Or $\ln x = -\ln \frac{1}{x}$ donc $\lim_{x \to 0} \ln x = -\infty$.

Propriété: Croissances comparées

$$1. \lim_{x \to +\infty} \frac{\ln x}{x} = 0$$

$$2. \lim_{x \to +\infty} \frac{\ln x}{x^n} = 0 \text{ avec } n \in \mathbb{N}$$

3.
$$\lim_{x \to 0} x \ln x = 0$$

4.
$$\lim_{\substack{x \to 0 \\ x > 0}} x^n \ln x = 0 \text{ avec } n \in \mathbb{N}$$

Démonstration :

1. Pour tout x > 0, on pose $y = \ln x$. On dans ce cas $e^y = x$.

$$\lim_{\substack{x \to +\infty \\ v \to +\infty}} \ln x = +\infty$$

$$\lim_{\substack{x \to +\infty \\ v \to +\infty}} \frac{e^{y}}{\ln x} = +\infty$$

$$\lim_{\substack{x \to +\infty \\ v \to +\infty}} \frac{e^{\ln x}}{\ln x} = +\infty, \text{ puis } \lim_{\substack{x \to +\infty \\ x \to +\infty}} \frac{\ln x}{x} = 0^{+}.$$

ainsi
$$\lim_{x \to +\infty} \frac{x}{\ln x} = +\infty$$
, puis $\lim_{x \to +\infty} \frac{\ln x}{x} = 0^+$.

2. Pour tout n > 1 avec $n \in \mathbb{N}$, on a $\frac{\ln x}{x^n} = \frac{1}{x^{n-1}} \times \frac{\ln x}{x}$

comme $\lim_{x \to +\infty} \frac{1}{x^{n-1}} = 0$ et $\lim_{x \to +\infty} \frac{\ln x}{x} = 0$ alors par produit de limites, on obtient $\lim_{x \to +\infty} \frac{\ln x}{x^n} = 0$

3. De la même façon, pour tout x > 0, on pose $y = \ln x$. On dans ce cas $e^y = x$.

$$\left| \begin{array}{l} \lim_{\substack{x \to 0 \\ x > 0}} \ln x = -\infty \\ \lim_{\substack{y \to -\infty \\ y > 0}} e^{y} y = 0 \end{array} \right\} \Longrightarrow \lim_{\substack{x \to 0 \\ x > 0}} e^{\ln x} \ln x = 0 \qquad \text{ainsi } \lim_{\substack{x \to 0 \\ x > 0}} x \ln x = 0.$$

4. Pour tout n > 1 avec $n \in \mathbb{N}$, on a $x^n \ln x = x^{n-1} \times x \ln x$

comme $\lim_{\substack{x\to 0\\x>0}} x^{n-1} = 0$ et $\lim_{\substack{x\to 0\\x>0}} x \ln x = 0$ alors produit de limites, on obtient $\lim_{\substack{x\to 0\\x>0}} x^n \ln x = 0$

Propriété: Limite et taux d'accroissement

$$\lim_{x \to 0} \frac{\ln(1+x)}{x} = 1$$

Démonstration :

La fonction \ln est dérivable en 1, donc par définition $\ln'(1) = \lim_{h \to 0} \frac{\ln(1+h)}{h}$. Comme $\ln'(1) = \frac{1}{1} = 1$, on a $\lim_{h \to 0} \frac{\ln(1+h)}{h} = 1$.

Méthode: Souvent dans le cas d'une F.I. faisant intervenir la fonction ln, on essaie de

- factoriser et faire apparaître des limites déjà connues ;
- procéder à un changement de variable.

 $\underline{\mathsf{Exemple}:} \ \mathsf{D\acute{e}terminer} \ \mathsf{les} \ \mathsf{limites} \ \mathsf{suivantes}: \ \lim_{x \to +\infty} (\ln x - 2x) \qquad \mathsf{puis} \qquad \lim_{x \to +\infty} x \ln \left(1 + \frac{1}{x} \right)$

1. Pour tout réel
$$x > 0$$
, $\ln x - 2x = x \left(\frac{\ln x}{x} - 2\right)$.

Or par propriété, $\lim_{x \to +\infty} \frac{\ln x}{x} = 0$. On a
$$\lim_{x \to +\infty} \frac{\ln x}{x} - 2 = -2$$

$$\lim_{x \to +\infty} x = +\infty$$

$$\Rightarrow \lim_{x \to +\infty} x \left(\frac{\ln x}{x} - 2\right) = -\infty$$

2. Pour tout réel x > 0, on pose $y = \frac{1}{x}$. $\lim_{x \to +\infty} \frac{1}{x} = 0^{+}$ $\lim_{y \to 0^{+}} \frac{\ln(1+y)}{y} = 1$ $\Rightarrow \lim_{x \to +\infty} \frac{\ln\left(1+\frac{1}{x}\right)}{\frac{1}{x}} = 1$ Ainsi $\lim_{x \to +\infty} x \ln\left(1+\frac{1}{x}\right) = 1$

Exemple : Soit f la fonction définie sur $]0;+\infty[$ par $f(x)=\ln\left(\frac{x+2}{x^2}\right)$. Étudier les limites de f aux bornes de son ensemble de définition.

- Limite en $+\infty$. Pour tout x > 0, on a $\frac{x+2}{x^2} = \frac{1}{x} + \frac{2}{x^2}$. D'où $\lim_{x \to +\infty} \frac{1}{x} = 0$ $\lim_{x \to +\infty} \frac{2}{x^2} = 0$ $\lim_{x \to +\infty} \frac{2}{x^2} = 0$ On pose $y = \frac{x+2}{x^2}$. On a $\lim_{x \to +\infty} \frac{x+2}{x^2} = 0^+$ $\lim_{x \to +\infty} \ln y = -\infty$ $\lim_{x \to +\infty} \ln \left(\frac{x+2}{x^2}\right) = -\infty$
- Limite en 0.

On va utiliser un théorème de comparaison. En effet, pour tout x > 0, on a

$$\frac{x+2}{x^2} > \frac{x}{x^2} = \frac{1}{x}.$$

Or \ln est croissante sur $]0; +\infty[$, donc

$$f(x) = \ln\left(\frac{x+2}{x}\right) > \ln\left(\frac{1}{x}\right) = -\ln x.$$

Comme $\lim_{x\to 0^+} \ln x = -\infty$, on a $\lim_{x\to 0^+} -\ln x = +\infty$ donc par comparaison $\lim_{x\to 0^+} f(x) = +\infty$.