

Nom et prénom :

Exercice 1. 8 points

On considère une variable aléatoire X qui suit une loi binomiale de paramètres 40 et 0, 3.

Donner les résultats à 10^{-3} près.

- 1. Calculer en mettant en evidence l'expression de calcul : p(X = 5).
- 2. A l'aide de la calculatrice, calculer p(X = 4) et p(X = 12).
- 3. A l'aide de la calculatrice, calculer $p(X \le 1)$ et $p(X \ge 18)$.
- 4. Déterminer k telque $p(X \le k) \ge 0.95$.
- 5. Déterminer l'éspérance et l'ecart type de la variable aléatoire X.

Correction

1. Pour rapel:
$$p(X = k) = \binom{n}{k} p^k (1 - p)^{n - k}$$

Alors
$$p(X = 5) = {40 \choose 5} \times 0.3^5 \times (1 - 0.3)^{40 - 5} = 658008 \times 0.3^5 \times 0.7^{35} \approx 0.006$$

2.
$$p(X = 4) \approx 0,002$$
 et $p(X = 12) \approx 0,137$

3.
$$p(X \le 6) \approx 0,024$$
 et $p(X \ge 12) = 1 - p(X \ge 11) \approx 0,559$

4. on cherche
$$k$$
 telque $p(X \le k) \ge 0.95$

d'après la calculatrice
$$p(X \le 16) \approx 0,937$$
 et $p(X \le 17) \approx 0,968$

donc le plus petit entier est
$$k = 17$$
 telque $p(X \le k) \ge 0.95$

5.
$$E(X) = n \times p = 40 \times 0, 3 = 12$$
 l'espérance est de 12

$$V(X) = n \times p(1-p) = 40 \times 0, 3 \times (1-0,3) = 8,4$$
 la variance est de 8,4

$$\sigma(X) = \sqrt{V(X)} = \sqrt{8.4} \approx 2,898$$
 l'ecart type est 2,90

Exercice 2. 2 points

- 1. Déterminer la solution générale de l'équation y' + 3y = 0.
- 2. Déterminer la solution unique vérifiant la condition initiale : y(0) = 4.

Correction

Or
$$y(0) = 4 \implies Ke^0 = 4 \implies K = 4$$

Donc $y(x) = 4e^{-3x}$

Exercice 3. 3 points

- 1. Déterminer la solution générale de l'équation y' 5y = 2.
- 2. Déterminer la solution unique vérifiant la condition initiale : y(0) = 1.

Correction

1.
$$y' - 5y = 2 \Leftrightarrow y' = 5y + 2$$

Alors une fonction constante est solution particulière de l'équation

Si
$$y = c$$
, $c \in \mathbb{R}$ alors $y' = 0$ d'où $0 = 5c + 2$ donc $c = -\frac{2}{5}$

Si
$$y = c$$
, $c \in \mathbb{R}$ alors $y' = 0$ d'où $0 = 5c + 2$ donc $c = -\frac{2}{5}$
Donc la forme générale : $y(x) = Ke^{5x} - \frac{2}{5}$, $K \in \mathbb{R}$

2. La solution générale de l'équation est :
$$y = Ke^{5x} - \frac{2}{5}$$

Or $y(0) = 1 \implies Ke^0 - \frac{2}{5} = 1 \implies K = 1 + \frac{2}{5} = \frac{7}{5}$
Donc $y = \frac{7}{5}e^{5x} - \frac{2}{5}$

$$Donc y = \frac{7}{5}e^{5x} - \frac{2}{5}$$

Exercice 4. 3,5 points

Soit f la fonction définie sur \mathbb{R} par $f(x) = (6x+1)e^{3x+1}$

- 1. Déterminer les nombres a et b tels que la fonction g, définie sur \mathbb{R} , par $g(x) = (ax + b)e^{3x+1}$ soit une primitive de f.
- 2. En déduire la primitive F de f sur \mathbb{R} telle que F(0) = e.

Correction

1. On doit chercher a et b telque F soit une primitive de f, càd telque F'(x) = f(x) pour tout $x \in \mathbb{R}$ On a $g(x) = (ax + b)e^{2x+1}$

Alors la fonction g, définie sur \mathbb{R} , par est dérivable sur \mathbb{R} en tant que produit de fonction qui le sont

D'où
$$g = u \times v$$
 et $g' = u'v + uv'$ avec
$$\begin{cases} u(x) = ax + b & \text{et } u'(x) = a \\ v(x) = e^{3x+1} & \text{et } v'(x) = 2e^{3x+1} \end{cases}$$

Alors
$$g'(x) = ae^{3x+1} + (ax+b) \times 3e^{3x+1} = (3ax+3b+a)e^{3x+1}$$

Comme
$$g'(x) = f(x)$$
 $\Leftrightarrow (3ax + 3b + a)e^{3x+1} = (6x + 1)e^{3x+1}$

Par identification terme à terme
$$\begin{cases} 3a = 6 \\ 3b + a = 1 \end{cases} \Leftrightarrow \begin{cases} a = 2 \\ 3b + 2 = 1 \end{cases} \Leftrightarrow \begin{cases} a = 2 \\ 3b = -1 \end{cases} \Leftrightarrow \begin{cases} a = 2 \\ b = -\frac{1}{3} \end{cases}$$

Donc on trouve l'expression de
$$g: g(x) = \left(2x - \frac{1}{3}\right)e^{3x+1}$$
 telque g soit une primitive de f

2. On sait que toutes les primitves de f sont égales à une constante près

D'où
$$F(x) = g(x) + k$$
 avec $k \in \mathbb{R}$

On peut chercher
$$k$$
 puisque $F(0) = e$ \Leftrightarrow $\left(2 \times 0 - \frac{1}{3}\right) e^{3 \times 0 + 1} + k = e$ \Leftrightarrow $-\frac{1}{3}e + k = e$ \Leftrightarrow $k = e + \frac{1}{3}e$ \Leftrightarrow $k = \frac{4}{3}e$ \Leftrightarrow $k = \frac{4e}{3}$

Donc
$$F(x) = \left(2x - \frac{1}{3}\right)e^{3x+1} + \frac{4e}{3}$$

Exercice 5. 3,5 points

Soit la fonction f définie sur]0; $+\infty$ [par $f(x) = 9x^2 - 6x + 1 + \frac{3}{x} + \frac{1}{x^2}$. Déterminer l'ensemble des primitives de f sur]0; $+\infty$ [.

Correction

On a la fonction f définie sur $]0; +\infty[$ par $f(x) = 9x^2 - 6x + 1 + \frac{3}{x} + \frac{1}{x^2}$

La fonction
$$f$$
 est continue sur $]0; +\infty[$
Alors $f(x) = 9 \times x^2 - 6 \times x + 1 + 3 \times \frac{1}{x} + \frac{1}{x^2}$

$$F_k(x) = 9 \times \frac{1}{3}x^3 - 6 \times \frac{1}{2}x^2 + x + 3 \times \ln(x) + \frac{-1}{x} + k, \ k \in \mathbb{R}$$

$$F_k(x) = \frac{9}{3}x^3 - \frac{6}{2}x^2 + x + 3 \times \ln(x) - \frac{1}{x} + k, \quad k \in \mathbb{R}$$

D'où l'ensemble des primitives sera de la forme :
$$F_k(x) = 9 \times \frac{1}{3} x^3 - 6 \times \frac{1}{2} x^2 + x + 3 \times \ln(x) + \frac{-1}{x} + k, \ k \in \mathbb{R}$$

$$F_k(x) = \frac{9}{3} x^3 - \frac{6}{2} x^2 + x + 3 \times \ln(x) - \frac{1}{x} + k, \quad k \in \mathbb{R}$$

$$F_k(x) = 3x^3 - 3x^2 + x + 3\ln(x) - \frac{1}{x} + k, \quad k \in \mathbb{R}$$