

Correction exercices : Probabilités conditionnelles

Probabilités conditionnelles

Exercice 1 (Avec des phrases).

- 1. Dans une bibliothèque, les statistiques montrent que :
 - 55% des adhérents sont des garçons;
 - 20% des adhérents sont des garçons ayant emprunté plus de 50 livres.

Quand on rencontre un garçon sortant de la bibliothèque, quelle est la probabilité qu'il ait emprunté plus de 50 livres?

2. Quand on joue à un jeu de grattage, la probabilité d'obtenir « 3 télés » est de 0,000001.

Si c'est le cas, on est invité à la télévision pour faire tourner une roue comportant 100 sections équiprobables dont 5 offrent un gain de 1000000 €.

Quelle est la probabilité de gagner 1000000 € à ce jeu?

3. « Je suis sûr à 95% de manquer le bus, auquel cas je serai en retard. Et même si je l'ai, il y aura une chance sur trois que je sois quand même en retard ».

Quelle est la probabilité que cette personne soit à l'heure?

4. Dans le lecteur MP3 d'Anita, 17% des titres sont du rock français. Plus généralement, 61% des titres du lecteur sont des titres français.

On met le lecteur en mode aléatoire et le premier titre est français. Quelle est la probabilité que ce soit du rock?

Correction

1. Quand on rencontre une personne sortant de la bibliothèque, on considère les évènements G et L définis respectivement par « la personne est un garçon » et « la personne a emprunté plus de 50 livres ».

On cherche donc
$$P_G(L) = \frac{P(G \cap L)}{P(G)} = \frac{0.2}{0.55} \approx 0.36.$$

2. On appelle T l'évènement « obtenir 3 télés au grattage » et M l'évènement « tomber sur une section de la roue à 1 000 000 d'euros ».

On cherche
$$P(M) = P(T \cap M) = P(T) \times P_T(M) = 0,0000001 \times \frac{5}{100} = 0,00000005.$$

3. On appelle B l'évènement « la personne ne manque pas le bus » et H l'évènement « la personne est à l'heure ».

On cherche
$$P(H)=P(H\cap B)=P(B)\times P_B(H)=0,05\times \frac{2}{3}=\frac{1}{30}.$$

- 4. On appelle R l'évènement « la chanson est du rock » et F l'évènement « la chanson est française ».
 - On cherche $P_F(R) = \frac{P(R \cap F)}{P(F)} = \frac{0.17}{0.61} \approx 0.28.$

Exercice 2.

Après les contrôles de mathématiques, 60% du temps, Issa dit « Je suis sûr que j'ai loupé ».

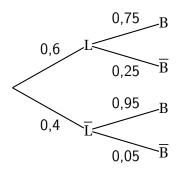
Ses amis sont pourtant formels : « Quand il dit ça, il a quand même 15 ou plus les 3/4 du temps. Et quand il ne dit rien, on peut être sûr à 95% qu'il va avoir 15 ou plus. »

Après un devoir de mathématiques, on considère les évènements :

- L : « Issa dit qu'il a loupé le devoir » ;
- B: « Issa a 15 ou plus au devoir ».
- 1. Construire un arbre pondéré de la situation.
- 2. Calculer $P(L \cap B)$ et interpréter cette probabilité dans les termes de l'énoncé.
- 3. Calculer la probabilité qu'il ne dise rien et qu'il ait moins de 15.

Correction

1.



2. On a $P(L \cap B) = P(L) \times P_L(B) = 0.6 \times 0.75 = 0.45$.

Cela veut dire qu'Issa dit avoir manqué et a pourtant plus de 15 pour 45% des contrôles.

3. On cherche $P(\overline{L} \cap \overline{B}) = P(\overline{L}) \times P_{\overline{L}}(\overline{B}) = 0.4 \times 0.05 = 0.02.$

Exercice 3 (D'après Bac).

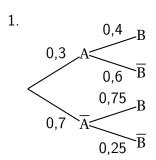
Sophie a mis des dragées dans une boîte, les unes contiennent une amande, les autres non :

- 30% des dragées contiennent une amande;
- 40% des dragées avec amande sont bleues, les autres sont roses;
- 75% des dragées sans amande sont bleues, les autres sont roses.

Sophie choisit au hasard une dragée dans la boîte et on considère les évènements :

- A : « la dragée choisie contient une amande » ;
- B : « la dragée choisie est bleue ».
- 1. Construire un arbre pondéré de la situation.
- 2. Montrer que $P(A \cap B) = 0.12$.
- 3. Calculer P(B).
- 4. En déduire $P_B(A)$.
- 5. Calculer $P_{\overline{R}}(A)$.
- 6. Sophie préfère les dragées contenant une amande. Doit-elle plutôt choisir une dragée bleue ou bien une dragée rose?

Correction



- 2. $P(A \cap B) = P(A) \times P_A(B) = 0.3 \times 0.4 = 0.12$
- 3. $P(B) = P(A) \times P_A(B) + P(\overline{A}) \times P_{\overline{A}}(B)$ = 0,3 × 0,4 + 0,7 × 0,75 = 0,645.
- 4. $P_B(A) = \frac{P(A \cap B)}{P(B)} = \frac{0.12}{0.645} \approx 0.186.$
- 5. $P_{\overline{B}}(A) = \frac{P(A \cap \overline{B})}{P(\overline{B})} = \frac{0.3 \times 0.6}{1 0.645} \approx 0.507.$
- 6. $P_B(A) < P_{\overline{B}}(A)$, il est donc plus probable qu'elle ait une amande si elle choisit une dragée rose : elle doit donc plutôt choisir une dragée rose.

Exercice 4 (Épidémiologie).

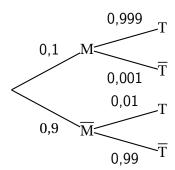
Dans un pays, une épidémie touche 10% de la population. Un test de dépistage de la maladie a été mis au point mais il n'est pas parfait :

- si un individu n'est pas touché par la maladie, le test est tout de même positif dans 1% des cas;
- si un individu est touché par la maladie, le test est tout de même négatif dans 0,1% des cas.
- 1. Représenter la situation par un arbre pondéré.
- 2. Toute la population passe le test de dépistage et on décide de donner un traitement à tous les individus ayant un test positif.
 - (a) Montrer que le traitement est donné à 10,89% de la population.
 - (b) À quel pourcentage de la population le traitement est-il donné à tort?
- 3. On tire un échantillon de 100 individus dans la population, ce tirage étant assimilable à un tirage avec remise.
 - (a) Quelle est la probabilité que 10 individus exactement soient sous traitement?
 - (b) Quelle est la probabilité que 5 individus ou moins soient sous traitement?

Correction

1. Quand on prend un individu au hasard, on considère les évènements M : « l'individu est malade » et T : « le test est positif ».

On a alors l'arbre ci-dessous :



- 2. (a) Quand on considère un individu, la question revient à calculer : $P(T) = 0.1 \times 0.999 + 0.9 \times 0.01 = 0.1089 \text{ soit } 10.89\% \text{ de la population.}$
 - (b) La question revient à trouver :

 $P(\overline{M}\cap T)=0.9\times 0.01=0.009$ soit 0.9% de la population.

Remarque : Le calcul 10,89-10 ne convient pas car les 10% de malades ne sont pas tous dans les 10,89% trouvés (il y a des faux négatifs).

- 3. On appelle X le nombre de personnes mises sous traitement. La variable aléatoire X suit la loi binomiale de paramètres n = 100 et p = 0,1089 (expérience assimilable à un tirage avec remise).
 - (a) La calculatrice donne $P(X = 10) \approx 0,126$.
 - (b) La calculatrice donne $P(X \le 5) \approx 0.033$.

Exercice 5 (Génétique).

Le daltonisme est une maladie génétique à transmission récessive liée au chromosome X c'est-à-dire que l'allèle responsable est récessif, pour un gène présent sur le chromosome X.

- Pour une femme, on distinguera le fait d'être malade (présence de l'allèle responsable sur les deux chromosomes X), porteuse de la maladie (présence de l'allèle responsable sur un seul chromosome X) et saine (absence totale de l'allèle responsable).
- Pour un homme, la présence de l'allèle sur l'unique chromosome X assure qu'il est malade.

Béatrice a un père daltonien mais elle-même n'est pas malade.

Sachant que 8 % des hommes sont daltoniens, quelle est la probabilité que Béatrice ait un enfant daltonien? On admettra que le daltonisme ou non d'une personne n'influence pas préférentiellement le don d'un chromosome X ou Y.

- 1. (a) Déterminer la probabilité que l'enfant d'un père malade et d'une mère porteuse de la maladie soit malade.
 - (b) Si un tel couple a quatre enfants, déterminer la probabilité que deux exactement soient malades. On admettra que le daltonisme éventuel ou non des enfants est indépendant.
- 2. Reprendre la question avec un père malade et une mère malade.

Correction

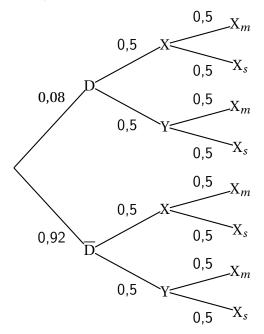
Comme le père de Béatrice est daltonien, le chromosome X qu'il lui a transmis est porteur de l'allèle responsable.

Comme Béatrice n'est pas malade, son autre chromosome X est sain.

On considère les évènements suivants :

- D : « le père de l'enfant est daltonien »
- X : « le père de l'enfant transmet son chromosome X ("malade") »
- Y : « le père de l'enfant transmet son chromosome Y »
- X_m : « Béatrice transmet son chromosome X "malade" »
- X_s : « Béatrice transmet son chromosome X "sain" »

On peut alors représenter la situation par l'arbre ci-dessous :



L'enfant est daltonien pour les branches n° 1, n° 3 et n° 7 c'est-à-dire avec une probabilité :

 $0.08 \times 0.5^2 + 0.08 \times 0.5^2 + 0.92 \times 0.5^2 = 0.27.$

Exercice 6 (Asie, juin 2019, Partie A).

En France, la consommation de produits bio croît depuis plusieurs années.

En 2017, le pays comptait 52 % de femmes. Cette même année, 92 % des Français avaient déjà consommé des produits bio. De plus, parmi les consommateurs de produits bio, 55 % étaient des femmes.

On choisit au hasard une personne dans le fichier des Français de 2017. On note :

- F l'évènement « la personne choisie est une femme » ;
- H l'évènement « la personne choisie est un homme » ;
- B l'évènement « la personne choisie a déjà consommé des produits bio ».
- 1. Traduire les données numériques de l'énoncé à l'aide des évènements F et B.
- 2. (a) Montrer que $P(F \cap B) = 0,506$.
 - (b) En déduire la probabilité qu'une personne ait consommé des produits bio en 2017, sachant que c'est une femme.
- 3. Calculer $P_H(\overline{B})$. Interpréter ce résultat dans le contexte de l'exercice.

Correction

1. Traduction des données :

$$P(F) = 0.52$$
; $P(B) = 0.92$; $P_B(F) = 0.55$.

- 2. (a) On a : $P(F \cap B) = P_B(F) \times P(B) = 0.55 \times 0.92 = 0.506$
 - (b) On en déduit : $P_F(B) = \frac{P(F \cap B)}{P(F)} = \frac{0,506}{0,52} \approx \boxed{0,973}$. La probabilité qu'une personne ait consommé des produits bio en 2017, sachant que c'est une femme vaut environ 0,973.
- 3. $P(B) = P(B \cap F) + P(B \cap H)$ donc $P(B \cap H) = P(B) P(B \cap F) = 0,92 0,506 = 0,414$. On a $P_H(B) = \frac{P(B \cap H)}{P(H)} = \frac{0,414}{0,48}$ donc $P_H(\overline{B}) = 1 \frac{0,414}{0,48} = \boxed{0,1375}$

Exercice 7 (Antilles-Guyane, juin 2019, Partie A).

Lors d'une soirée, une chaîne de télévision a retransmis un match. Cette chaîne a ensuite proposé une émission d'analyse de ce match.

On dispose des informations suivantes :

- 56 % des téléspectateurs ont regardé le match;
- un quart des téléspectateurs ayant regardé le match ont aussi regardé l'émission ;
- 16,2 % des téléspectateurs ont regardé l'émission.

On interroge au hasard un téléspectateur. On note les évènements :

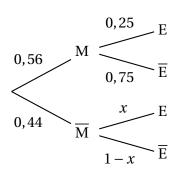
- M : « le téléspectateur a regardé le match » ;
- E : « le téléspectateur a regardé l'émission ».

On note x la probabilité qu'un téléspectateur ait regardé l'émission sachant qu'il n'a pas regardé le match.

- 1. Construire un arbre pondéré illustrant la situation.
- 2. Déterminer la probabilité de $M \cap E$.
- 3. (a) Vérifier que p(E) = 0.44x + 0.14.
 - (b) En déduire la valeur de x.
- 4. Le téléspectateur interrogé n'a pas regardé l'émission. Quelle est la probabilité, arrondie à 10^{-2} , qu'il ait regardé le match?

Correction

1.



- 2. $p(M \cap E) = 0.56 \times 0.25 = 0.14$.
- 3. (a) D'après la formule des probabilités totales, on a $P(E) = p(M \cap E) + p(\overline{M} \cap E) = 0.56 \times 0.25 + 0.44 \times x = 0.14 + 0.44x$.
 - (b) D'après l'énoncé, on sait que p(E) = 0,162 car 16,2% des téléspectateurs ont regardé l'émission. On a donc

$$0, 14 + 0, 44x = 0, 162 \iff x = \frac{0, 162 - 0, 14}{0, 44} = 0, 05.$$

Ainsi, il y a 5% des téléspectateurs ayant regardé l'émission sachant qu'ils n'ont pas regardé le match.

4. On cherche $p_{\overline{E}}(M)$. D'après la formule des probabilités conditionnelles, on a

$$p_{\overline{\mathbf{E}}}(\mathbf{M}) = \frac{p\left(\mathbf{M} \cap \overline{\mathbf{E}}\right)}{p\left(\overline{\mathbf{E}}\right)} = \frac{0.56 \times 0.75}{1 - 0.162} \approx 0.50.$$

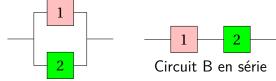
Exercice 8 (Antilles-Guyane - 2015).

Un circuit électronique est composé de deux composants identiques numérotés 1 et 2.

On note D_1 l'évènement « le composant 1 est défaillant avant un an » et on note D_2 l'évènement « le composant 2 est défaillant avant un an ».

On suppose que les deux évènements D_1 et D_2 sont indépendants et que $P(D_1) = P(D_2) = 0.39$.

Deux montages possibles sont envisagés, présentés cicontre :



Circuit A en parallèle

- 1. Lorsque les deux composants sont montés « en parallèle », le circuit A est défaillant uniquement si les deux composants sont défaillants en même temps.
 - Lorsque les deux composants sont montés « en série », le circuit B est défaillant dès que l'un au moins des deux composants est défaillant.

Quel montage privilégier?

2. On choisit le meilleur montage trouvé à la question précédente pour fabriquer un appareil.

Sur un échantillon de 250 de ces appareils tirés au hasard (ce tirage étant assimilable à un tirage avec remise), en moyenne, combien seront défectueux à cause de ce circuit?

Correction

1. • L'événement « le circuit A est défaillant » est l'événement $D_1 \cap D_2$.

Comme D_1 et D_2 sont indépendants, on a :

$$P(D_1 \cap D_2) = P(D_1) \times P(D_2) = 0.39 \times 0.39$$

= 0.1521.

• L'événement « le circuit B est défaillant » est l'événement $D_1 \cup D_2$.

On calcule:

$$P(D_1 \cup D_2) = P(D_1) + P(D_2) - P(D_1 \cap D_2)$$

= 0,39 × 0,39 - 0,1521 = 0,6279.

Il faut donc privilégier le circuit A.

2. Le nombre d'appareils défectueux dans cet échantillon suit la loi binomiale de paramètres n=250 et p=0,1521.

En moyenne, le nombre d'appareils défectueux est donc $n \times p = 250 \times 0{,}1521 = 38{,}025$.

Suites et probabilités

Exercice 9 (D'après Bac (Pondichéry - 2013)).

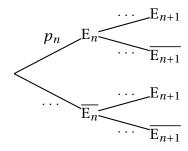
Dans une entreprise, on s'intéresse à la probabilité qu'un salarié soit absent durant une période d'épidémie de grippe.

- Un salarié malade est absent.
- La première semaine de travail, le salarié n'est pas malade.
- Si la semaine n le salarié n'est pas malade, il tombe malade la semaine n+1 avec une probabilité égale à 0,04.
- Si la semaine n le salarié est malade, il reste malade la semaine n+1 avec une probabilité égale à 0,24.

On désigne, pour tout entier naturel n supérieur ou égal à 1, par E_n l'évènement « le salarié est absent pour cause de maladie la n^e semaine ». On note p_n la probabilité de l'évènement E_n .

On a ainsi : $p_1 = 0$ et, pour tout entier naturel n supérieur ou égal à $1 : 0 \le p_n < 1$.

- 1. (a) Déterminer la valeur de p_3 à l'aide d'un arbre de probabilité.
 - (b) Sachant que le salarié a été absent pour cause de maladie la troisième semaine, déterminer la probabilité qu'il ait été aussi absent pour cause de maladie la deuxième semaine.
- 2. (a) Recopier sur la copie et compléter l'arbre de probabilité donné ci-dessous



- (b) Montrer que, pour tout entier naturel n supérieur ou égal à 1, $p_{n+1} = 0.2p_n + 0.04$.
- (c) Montrer que la suite (u_n) définie pour tout entier naturel n supérieur ou égal à 1 par $u_n = p_n 0.05$ est une suite géométrique dont on donnera le premier terme et la raison r.

En déduire l'expression de u_n puis de p_n en fonction de n et r.

- (d) En déduire la limite de la suite (p_n) .
- (e) On admet dans cette question que la suite (p_n) est croissante. On considère l'algorithme suivant :

1 Variables

- 2 K et J sont des entiers naturels
- 3 P est un nombre reel

4 Initialisation

- 5 P prend la valeur 0
- 6 J prend la valeur 1

7 Traitement

- 8 Saisir la valeur de K
- 9 Tant que $P < 0.05 10^{(-K)}$
- 10 P prend la valeur 0.2 * P + 0.04
- J prend la valeur J+1
- 12 Fin Tant que

13 Sortie

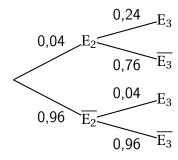
14 Afficher J

À quoi correspond l'affichage final J?

Pourquoi est-on sûr que cet algorithme s'arrête?

Correction

1. (a) On a:



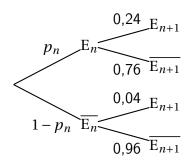
Par la formule des probabilités totales, on en déduit que :

$$p_3 = P(E_3) = 0.04 \times 0.24 + 0.96 \times 0.04 = 0.048.$$

(b) On cherche:

$$P_{E_3}(E_2) = \frac{P(E_2 \cap E_3)}{P(E_3)} = \frac{0.04 \times 0.24}{0.048} = 0.2.$$

2. (a)



(b) Par la formule des probabilités totales, on en déduit que :

$$p_{n+1} = P(E_{n+1}) = p_n \times 0.24 + (1 - p_n) \times 0.04$$

= 0.24 $p_n + 0.04 - 0.04p_n = 0.2p_n + 0.04$.

(c) $u_{n+1} = p_{n+1} - 0.05 = 0.2p_n + 0.04 - 0.05$ = $0.2p_n - 0.01 = 0.2(p_n - 0.05) = 0.2u_n$ donc la suite (u_n) est géométrique de raison r = 0.2et de premier terme $u_1 = p_1 - 0.05 = 0 - 0.05 = -0.05$.

On a alors $u_n = u_1 \times r^{n-1} = -0.05 \times 0.2^{n-1}$ puis, comme $p_n = u_n + 0.05$, on déduit que $p_n = 0.05 - 0.05 \times 0.2^{n-1}$.

- (d) Comme -1 < 0.2 < 1, on a $\lim_{n \to +\infty} 0.2^{n-1} = 0$ puis $\lim_{n \to +\infty} p_n = 0.05$.
- (e) Pour un entier naturel K choisi par l'utilisateur, l'affichage J correspondant au premier rang pour lequel $p_n \ge 0.05 10^{-K}$ ou $p_n \ge 0.05 0.1^K$ ou $p_n \in [0.05 0.1^K ; +\infty[$.

On est sûr que cet algorithme s'arrête car la suite (p_n) est convergente de limite 0,05.

Précisément, on peut par exemple considérer l'intervalle $I = \left]0,05 - \frac{0,1^K}{2}; +\infty\right[$ qui contient 0,05 et est inclus dans $[0,05-0,1^K; +\infty[$.

Comme I est un intervalle ouvert contenant $0.05 = \lim_{n \to +\infty} p_n$, il existe un rang à partir duquel tous les termes de (p_n) sont dans I donc dans $[0.05-0.1]^K$; $+\infty$ [ce qui assure l'arrêt de l'algorithme.

.

Exercice 10.

Chaque jour Bill doit décider s'il achète du pain ou non.

- S'il a acheté du pain un jour, la probabilité qu'il en achète le lendemain est 0,3 (parce qu'il lui en reste parfois du jour précédent ou qu'il n'en a simplement pas envie ce jour-là).
- S'il n'a pas acheté de pain un jour, la probabilité qu'il en achète le lendemain est 0,8.

Pour tout entier $n \in \mathbb{N}^*$, on appelle A_n l'évènement « Bill achète du pain le n^e jour » et on note $p_n = P(A_n)$.

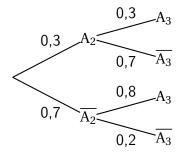
Aujourd'hui (le 1^{er} jour), Bill a acheté du pain, ainsi $p_1 = 1$.

- 1. Calculer p_2 et p_3 .
- 2. Représenter la situation par un arbre sur lequel figurent les évènements A_n , $\overline{A_n}$, A_{n+1} et $\overline{A_{n+1}}$.
- 3. Montrer que $p_{n+1} = 0.8 0.5 p_n$.
- 4. Montrer que $p_n = \frac{7}{15} \left(-\frac{1}{2}\right)^{n-1} + \frac{8}{15}$ pour tout $n \in \mathbb{N}^*$.
- 5. (a) En déduire $\lim_{n\to+\infty} p_n$.
 - (b) Interpréter concrètement le résultat de la question précédente.

Correction

1. $p_2 = P(A_2) = 0.3$ par énoncé.

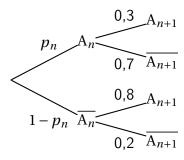
Pour le calcul de p_3 , construisons un arbre :



Par la formule des probabilités totales, on en déduit que :

$$p_3 = P(A_3) = 0.3 \times 0.3 + 0.7 \times 0.8 = 0.65.$$

2.



3. Par la formule des probabilités totales, on en déduit que :

$$p_{n+1} = P(A_{n+1}) = p_n \times 0.3 + (1 - p_n) \times 0.8$$

= $0.3 p_n + 0.8 - 0.8 p_n = 0.8 - 0.5 p_n$.

4. On procède par récurrence :

On veut montrer que $p_n = \frac{7}{15} \left(-\frac{1}{2} \right)^{n-1} + \frac{8}{15}$ pour tout $n \ge 1$.

• On considère la propriété :

$$(p_n = \frac{7}{15} \left(-\frac{1}{2}\right)^{n-1} + \frac{8}{15}).$$

■ Initialisation : Pour n = 1, on a $p_1 = 1$ par énoncé et $\frac{7}{15} \left(-\frac{1}{2} \right)^{1-1} + \frac{8}{15} = \frac{7}{15} + \frac{8}{15} = 1$.

On a donc bien $p_1 = \frac{7}{15} \left(-\frac{1}{2}\right)^{1-1} + \frac{8}{15}$: la propriété est vraie pour n = 1.

■ Hérédité : On va montrer que si la propriété est vraie à un certain rang $n \ge 1$ alors elle est vraie au rang n+1.

Supposons donc que $p_n = \frac{7}{15} \left(-\frac{1}{2}\right)^{n-1} + \frac{8}{15}$, on a alors : $p_{n+1} = 0.8 - 0.5 p_n = \frac{4}{5} - \frac{1}{2} p_n$ $= \frac{4}{5} - \frac{1}{2} \left(\frac{7}{15} \left(-\frac{1}{2}\right)^{n-1} + \frac{8}{15}\right)$ $= \frac{4}{5} + \frac{7}{15} \left(-\frac{1}{2}\right)^n - \frac{4}{15}$

$$5 \quad 15 \quad 2) \quad 15$$

$$= \frac{12}{15} + \frac{7}{15} \left(-\frac{1}{2}\right)^n - \frac{4}{15}$$

$$7 \quad (1)^n \quad 8$$

 $= \frac{7}{15} \left(-\frac{1}{2} \right)^n + \frac{8}{15}.$

On a donc bien $p_{n+1} = \frac{7}{15} \left(-\frac{1}{2}\right)^{n+1-1} + \frac{8}{15}$, c'est-à-dire que la propriété est vraie au rang n+1.

- Conclusion : La propriété est vraie pour n=1 et est héréditaire. Par récurrence, on a alors $p_n = \frac{7}{15} \left(-\frac{1}{2}\right)^{n-1} + \frac{8}{15}$ pour tout $n \ge 1$.
- 5. (a) Comme $-1 < -\frac{1}{2} < 1$, on a $\lim_{n \to +\infty} \left(-\frac{1}{2} \right)^{n-1} = 0$ puis $\lim_{n \to +\infty} p_n = \frac{8}{15}$.
 - (b) Cela veut dire que la probabilité que Bill achète du pain un jour lointain est proche de $\frac{8}{15}$.

Evènements indépendants

Exercice 11.

On considère deux évènements indépendants A et B tels que P(A) = 0.15 et $P(A \cap B) = 0.085$. Calculer P(B).

Correction

A et B sont indépendants donc
$$P(A \cap B) = P(A) \times P(B)$$
.
Ainsi, $P(B) = \frac{P(A \cap B)}{P(A)} = \frac{0,085}{0,15} = \frac{17}{30} \approx 0,567$.

Exercice 12.

On considère deux évènements indépendants E et F tels que $P(\overline{F}) = 0,53$ et $P(E \cap F) = 0,25$. Calculer P(E).

Correction

On a
$$P(F)=0,47$$
.
 E et F sont indépendants donc $P(E\cap F)=P(E)\times P(F)$.
 Ainsi, $P(E)=\frac{P(E\cap F)}{P(F)}=\frac{0,25}{0,47}=\frac{25}{47}\approx 0,532$.

Exercice 13.

On considère deux évènements indépendants C et D tels que $P(C \cup D) = 0.23$ et P(C) = 0.11. Calculer P(D).

Correction

C et D sont indépendants donc
$$P(C \cap D) = P(C) \times P(D)$$
 donc $P(C) + P(D) - P(C \cup D) = P(C) \times P(D)$ puis $P(D)(1 - P(C)) = P(C \cup D) - P(C)$ Ainsi, $P(D) = \frac{P(C \cup D) - P(C)}{1 - P(C)} = \frac{0.23 - 0.11}{1 - 0.11}$ $= \frac{0.12}{0.89} = \frac{12}{89} \approx 0.135$.

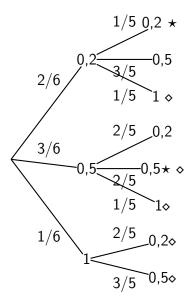
Exercice 14.

Lily a dans sa poche deux pièces de 20 centimes, trois de 50 centimes et une de 1 euro.

Elle tire successivement (sans remise) deux pièces de sa poche. Les évènements « les deux pièces sont du même montant » et « les deux pièces lui permettent d'acheter un croissant à 1 euro » sont-ils indépendants?

Correction

Représentons préalablement la situation par un arbre :



On considère les évènements M : « les deux pièces sont du même montant » et C : « les deux pièces lui permettent d'acheter un croissant à 1 euro ».

On a:

■
$$P(M) = \frac{2}{6} \times \frac{1}{5} + \frac{3}{6} \times \frac{2}{5} = \frac{8}{30} = \frac{4}{15} \text{ (voir } \star \text{)};$$

P(C) =
$$\frac{2}{6} \times \frac{1}{5} + \frac{3}{6} \times \frac{2}{5} + \frac{3}{6} \times \frac{1}{5} + \frac{1}{6} \times \frac{2}{5} + \frac{1}{6} \times \frac{3}{5}$$

= $\frac{16}{30} = \frac{8}{15}$ (voir \diamondsuit);

•
$$P(C) \times P(M) = \frac{4}{15} \times \frac{8}{15} = \frac{32}{225};$$

■
$$P(C \cap M) = \frac{3}{6} \times \frac{2}{5} = \frac{1}{5}$$
.

On constate que $P(C) \times P(M) \neq P(C \cap M)$ donc C et M ne sont pas indépendants.

Exercice 15. Aujourd'hui Nat' a décidé d'aller donner son sang. Ben hésite alors : « Je vais peut-être en profiter pour aller faire du vélo le long des bords de Seine ». On considère que la probabilité qu'il aille faire du vélo est 0,85.

Nat' ayant un petit volume sanguin, il est possible qu'on ne l'autorise pas à donner son sang (elle est « refusée » une fois sur cinq) auquel cas, si Ben est parti faire du vélo, il ne sera pas là quand elle rentrera.

Dans tous les autres cas, il sera là quand elle rentrera.

En admettant, que les évènements « Nat' n'est pas autorisée à donner son sang » et « Ben choisit d'aller faire du vélo » soient indépendants, quelle est la probabilité que Ben soit là quand Nat' rentrera?

Correction

On appelle:

- V l'évènement « Ben choisit d'aller faire du vélo » ;
- S l'évènement « Nat' est autorisée à donner son sang ».

On cherche à calculer :

$$\begin{split} P\left(\overline{V \cap \overline{S}}\right) &= 1 - P(V \cap \overline{S}) = 1 - P(V) \times P(\overline{S}) \text{ puisque } V \text{ et } \overline{S} \text{ sont indépendants par énoncé.} \\ \text{Ainsi, } P\left(\overline{V \cap \overline{S}}\right) &= 1 - 0.85 \times \frac{1}{5} = 0.83. \end{split}$$

Ainsi,
$$P(\overline{V \cap \overline{S}}) = 1 - 0.85 \times \frac{1}{5} = 0.83$$