

Probabilités conditionnelles

Dans tout ce chapitre, Ω désigne l'univers des possibles soit l'ensemble des issues d'une expérience aléatoire.

Pour tout E événement de Ω , on note P(E) la probabilité de E.

On rappelle qu'un événement est de probabilité nulle si et seulement si c'est un événement impossible :

$$P(E) = 0 \iff E = \emptyset$$

I Probabilité conditionnelle

Propriété 1 : Probabilité de B sachant A

Soit A un événement de Ω étant de probabilité non nulle $(P(A) \neq 0)$.

La fonction f qui a tout événement B associe $f(B) = \frac{P(A \cap B)}{P(A)}$, définit une probabilité sur Ω .

Autrement dit,

- Pour tout événement B, $0 \le f(B) \le 1$
- $f(\Omega) = 1$
- Si B_1 et B_2 sont deux événements tels que $B_1 \cap B_2 = \emptyset$ (on dira dans ce cas que B_1 et B_2 sont incompatibles ou disjoints), alors $f(B_1 \cup B_2) = f(B_1) + f(B_2)$

Définition 1 : Probabilité de B sachant A

Soient A et B deux événements de l'univers Ω , A étant de probabilité non nulle $(P(A) \neq 0)$.

La **probabilité de** B **sachant** A (probabilité que l'événement B se réalise sachant que l'événement A est réalisé) est le nombre $P_A(B) = \frac{P(A \cap B)}{P(A)}$.

On note parfois $P_A(B) = P(B|A)$.

Remarque 1. De façon symétrique, on a $P_B(A) = \frac{P(.....)}{P(....)} = \frac{P(A \cap B)}{P(....)}$

<u>Remarque</u> 2. D'après la propriété 1, P_A est une nouvelle probabilité, dite **probabilité conditionnelle**, définie sur l'univers Ω .

Exemple 1. Un service après-vente a constaté que les retours d'un appareil sont dus dans 30% des cas à une panne A, dans 40% des cas à une panne B et dans 3% des cas à la simultanéité des deux pannes.

Un appareil choisi au hasard présente la panne A, la probabilité pour qu'il ait aussi la panne B est

$$P_A(B) = \frac{P(A \cap B)}{P(A)} = \frac{0.03}{0.3} = 0.1$$

Remarque 3. Il faut bien distinguer $P_A(B)$ de $P(A \cap B)$.

- P_A(B) désigne la probabilité pour l'appareil d'avoir la panne B sachant qu'il a déjà la panne A.
- P(A∩B) désigne la probabilité pour l'appareil d'avoir la panne A et la panne B.

Propriété 2 : Propriétés de P_A

Soit A un événement de probabilité non-nulle.

Puisque P_A est une probabilité, pour tout événement B de Ω , nous avons

$$0 \le P_A(B) \le 1$$
 et $P_A(B) + P_A(\overline{B}) = 1$

Propriété 3 : Intersection

Si A et B sont des événements de probabilités non-impossibles de Ω , alors P(A) et P(B) sont non-nuls, et

on a
$$P(A \cap B) = P(A) \times P_A(B)$$
 et $P(A \cap B) = P(B) \times P_B(A)$

Démonstration Cela se déduit de la définition d'une probabilité conditionnelle.

$$\overline{P_A(B) = \frac{P(B \cap A)}{P(A)}} \text{ donc } P(B \cap A) = P_A(B) \times P(B) \qquad \text{et} \qquad P_B(A) = \frac{P(A \cap B)}{P(B)} \text{ donc } P(A \cap B) = P_B(A) \times P(A)$$

Tableau à double entrée

Un tableau à double entrée permet de déterminer des probabilités conditionnelles.

	A	Ā	Total
В	$P(A \cap B)$	$P(\overline{A} \cap B)$	P(B)
B	$P(\overline{B} \cap A)$	$P(\overline{A} \cap \overline{B})$	$P(\overline{B})$
Total	P(A)	$P(\overline{A})$	1

Arbres pondérés

Propriété 4 : Règles des arbres probabilistes

On peut modéliser une situation mettant en jeu des probabilités conditionnelles grâce à un **arbre pondéré** (ou **arbre probabiliste**) en suivant les règles suivantes :

- 1. la somme des probabilités des événements (disjoints) correspondant aux branches partant d'un même nœud est 1
- 2. la probabilité d'un chemin est le produit des probabilités des branches qui composent ce chemin
- 3. la probabilité d'un événement est la somme des probabilités conduisant à ce chemin

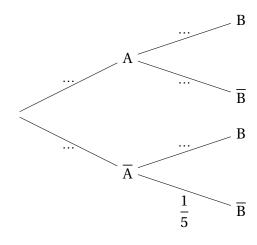
Les probabilités sur les 2e, 3e, etc. branches d'un chemin sont des probabilités conditionnelles

Remarque 4. Dans le cas de deux évènements A et B de probabilités non nulles, on a :

C'est le contexte qui induira de représenter la situation par un arbre ou l'autre.

Exemple 2. Soient A et B deux événements non impossibles.

On donne $P(A) = \frac{1}{4}$ et $P_A(B) = \frac{2}{5}$. Une autre information est donnée par l'arbre de probabilités ci-dessous.



- 1. Compléter l'arbre de probabilités.

2. Déterminer
$$P(\overline{A} \cap B)$$
.
$$P(\overline{A} \cap B) = P(\overline{A}) \times P_{\overline{A}}(B) = \frac{3}{4} \times \frac{4}{5} = \frac{3}{5}.$$

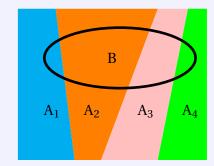
II Probabilités totales

Définition 2 : Partition de l'univers

On dit que des événements A_1 , A_2 , ..., A_n forment une **partition de l'univers** Ω si

- ces événements sont **deux à deux incompatibles**, c'est-à-dire pour tout i, j avec $1 \le i, j \le n$ et $i \ne j$, on a $A_i \cap A_j = \emptyset$
- ces événements **recouvrent** Ω , c'est-à-dire $A_1 \cup A_2 \cup ... \cup A_n = \Omega$.

Illustration pour n = 4 (le rectangle représente l'univers)



Si B est un événement, alors $A_1 \cap B$, $A_2 \cap B$, ..., $A_n \cap B$ forment une partition de B

Propriété 5 : Formule des probabilités totales

Soient A_1 , A_2 , ..., A_n des événements non-vides formant une partition de l'univers Ω .

Pour tout événement B, on a $P(B) = P(A_1 \cap B) + P(A_2 \cap B) + ... + P(A_n \cap B)$.

 $\mathsf{Ainsi}\ P(B) = P(A_1) \times P_{A_1}(B) + P(A_2) \times P_{A_2}(B) + \ldots + P(A_n) \times P_{A_n}(B).$

Remarque 5. Pour tout événement A non-vide (ou impossible $A \neq \emptyset$) et non certain $(\overline{A} \neq \emptyset)$, A et \overline{A} forment toujours une partition de l'univers. On a donc pour tout événement B,

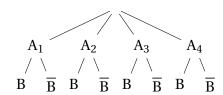
$$P(B) = P(A \cap B) + P(\overline{A} \cap B) = P(A) \times P_A(B) + P(\overline{A}) \times P_{\overline{A}}(B).$$

Remarque 6. Cette définition formalise la règle 3 sur les arbres pondérés.

Exemple 3.

Par exemple, pour
$$n = 4$$
, on a

$$P(B) = P(A_1) \times P_{A_1}(B) + P(A_2) \times P_{A_2}(B) + P(A_3) \times P_{A_3}(B) + P(A_4) \times P_{A_4}(B)$$



<u>Exemple</u> 4. Tous les élèves de Terminale ont passé un certificat de langues. 80% ont réussi le test, Parmi ceux qui ont réussi le test, 95% n'ont jamais redoublé.

Parmi ceux qui ont échoué, 2% n'ont jamais redoublé.

On note

T : « L'élève a réussi le test »

et

D: « L'élève a redoublé »

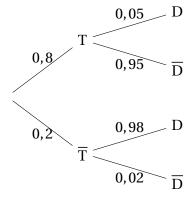
1. La probabilité qu'un élève n'ait pas redoublé est

Comme A et \overline{A} forment toujours une partition de l'univers

D'après la formule des probabilités totales

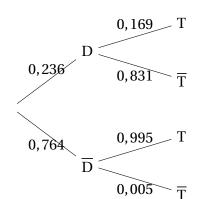
$$P(\overline{D}) = P(T \cap \overline{D}) + P(\overline{T} \cap \overline{D})$$

$$P(\overline{D}) = 0,8 \times 0,95 + 0,2 \times 0,02 = 0,764$$



2. La probabilité qu'un élève n'ait pas réussi le test sachant qu'il n'a pas redoublé est

$$P_{\overline{D}}(\overline{T}) = \frac{P(\overline{T} \cap \overline{D})}{P(\overline{D})} = \frac{0.2 \times 0.02}{0.764} = 0.005$$



3. La probabilité qu'un élève ait réussi le test sachant qu'il a redoublé est

$$P_{D}(T) = \frac{P(T \cap D)}{P(D)} = \frac{0.8 \times 0.05}{1 - 0.764} = 0.169$$

III Indépendance de deux événements

Définition 3 : Indépendance de deux événements

Considérons deux événements de probabilités A et B, de l'univers Ω .

Si $P_A(B) = P(B)$, c'est-à-dire si la réalisation ou non de l'événement A ne modifie pas la probabilité de B, on dit que B est **indépendant** de A.

Ainsi $P_B(A) = P(A)$ donc l'événement A est indépendant de l'événement B.

On en déduit que B est indépendant de A si et seulement si A est indépendant de B.

Propriété 6 : caractérisation de l'indépendance

Deux événements A et B de probabilités non nulles sont indépendants si et seulement si

$$P_A(B) = P(B)$$
 ou $P_B(A) = P(A)$

Deux événementsA et B de probabilités non nulles sont indépendants si et seulement si

$$P(A \cap B) = P(A) \times P(B)$$

Remarque 8. Ne pas confondre événements incompatibles et événements indépendants.

Exemple 5. Montrer que A et B sont indépendants étant données les probabilités données ci-dessous.

		A	Ā	Total
	В	0,3	0,1	0,4
	$\overline{\mathrm{B}}$	0,45	0,15	0,6
	Total	0,75	0,25	1

$$P(A \cap B) = 0,3$$

$$P(A) \times P(B) = 0,75 \times 0,4 = 0,3$$

Comme $P(A \cap B) = P(A) \times P(B)$ alors les événements A et B sont indépendants.

Propriété 7 : Indépendance et événements contraires

Si deux événements A et B sont indépendants alors il en est de même pour les événements \overline{A} et B, ainsi que pour \overline{A} et \overline{B} .

Démonstration On démontre cette propriété pour \overline{A} et B. La méthode est similaire pour les autres cas.

On sait que
$$P(\overline{A} \cap B) = P(B) \times P_B(\overline{A})$$
.

Comme
$$P_B(A) + P_B(\overline{A}) = 1$$
, alors $P_B(\overline{A}) = 1 - P_B(A)$.

D'où
$$P(\overline{A} \cap B) = P(B) \times (1 - P_B(A)).$$

Or, comme A et B sont indépendants, $P_B(A) = P(A)$,

donc on a
$$P(\overline{A} \cap B) = P(B) \times (1 - P(A))$$
.

On en déduit que $P(\overline{A} \cap B) = P(B) \times P(\overline{A})$, ce qui prouve que \overline{A} et B sont indépendants.