

Probabilités conditionnelles

Dans tout ce chapitre, Ω désigne l'univers des possibles soit l'ensemble des issues d'une expérience aléatoire.

Pour tout E événement de Ω , on note P(E) la probabilité de E.

On rappelle qu'un événement est de probabilité nulle si et seulement si c'est un événement

$$P(E) = 0 \iff \dots$$

I Probabilité conditionnelle

Propriété 1 : Probabilité de B sachant A

Soit A un événement de Ω étant de probabilité non nulle $(P(A) \neq 0)$.

La fonction f qui a tout événement B associe $f(B) = \frac{P(A \cap B)}{P(A)}$, définit une probabilité sur Ω . Autrement dit,

- Pour tout événement B, $0 \le f(B) \le 1$
- $f(\Omega) = 1$
- Si B_1 et B_2 sont deux événements tels que $B_1 \cap B_2 = \emptyset$ (on dira dans ce cas que B_1 et B_2 sont incompatibles ou disjoints), alors $f(B_1 \cup B_2) = f(B_1) + f(B_2)$

Définition 1 : Probabilité de B sachant A

Soient A et B deux événements de l'univers Ω , A étant de probabilité non nulle $(P(A) \neq 0)$.

La **probabilité de** B **sachant** A (probabilité que l'événement B se réalise sachant que l'événement A est réalisé) est le nombre $P_A(B) = \frac{\dots}{1 + 1}$.

On note parfois $P_A(B) = P(B|A)$.

<u>Remarque</u> 2. D'après la propriété 1, P_A est une nouvelle probabilité, dite **probabilité conditionnelle**, définie sur l'univers Ω .

Exemple 1. Un service après-vente a constaté que les retours d'un appareil sont dus dans 30% des cas à une panne A, dans 40% des cas à une panne B et dans 3% des cas à la simultanéité des deux pannes.

Un appareil choisi au hasard présente la panne A, la probabilité pour qu'il ait aussi la panne B est :

Remarque 3. Il faut bien distinguer $P_A(B)$ de $P(A \cap B)$.

- ullet $P_A(B)$ désigne la probabilité pour l'appareil d'avoir la panne B qu'il a déjà la panne A.
- $P(A \cap B)$ désigne la probabilité pour l'appareil d'avoir la panne A la panne B.

Propriété 2 : Propriétés de P_A

Soit A un événement de probabilité non-nulle.

Puisque P_A est une probabilité, pour tout événement B de Ω , nous avons

$$\dots \le P_A(B) \le \dots$$
 et $P_A(B) + P_A(\overline{B}) = \dots$

Propriété 3 : Intersection

Si A et B sont des événements de probabilités non-impossibles de Ω , alors P(A) et P(B) sont non-nuls, et

on a
$$P(A \cap B) = P(A) \times \dots$$
 et $P(A \cap B) = P(B) \times \dots$

<u>Démonstration</u> Cela se déduit de la définition d'une probabilité conditionnelle.

$$\overline{P_A(B)} = \frac{P(B \cap A)}{P(A)} \text{ donc } P(B \cap A) = P_A(B) \times P(B) \quad \text{ et } \quad P_B(A) = \frac{P(A \cap B)}{P(B)} \text{ donc } P(A \cap B) = P_B(A) \times P(A)$$

Tableau à double entrée

Un tableau à double entrée permet de déterminer des probabilités conditionnelles.

	A	Ā	Total
В	$P(A \cap B)$	$P(\overline{A} \cap B)$	P(B)
$\overline{\mathrm{B}}$	$P(\overline{B} \cap A)$	$P(\overline{A} \cap \overline{B})$	$P(\overline{B})$
Total	P(A)	$P(\overline{A})$	1

Arbres pondérés

Propriété 4 : Règles des arbres probabilistes

On peut modéliser une situation mettant en jeu des probabilités conditionnelles grâce à un **arbre pondéré** (ou **arbre probabiliste**) en suivant les règles suivantes :

- 1. la somme des probabilités des événements (disjoints) correspondant aux branches partant d'un même nœud est
- 2. la probabilité d'un chemin est le des probabilités des branches qui <u>composent</u> ce chemin
- 3. la probabilité d'un événement est la des probabilités <u>conduisant</u> à ce chemin

Les probabilités sur les 2^e, 3^e, etc. branches d'un chemin sont des probabilités conditionnelles

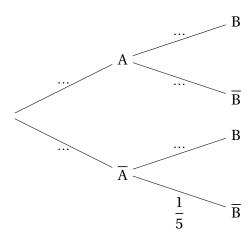
(0)

Remarque 4. Dans le cas de deux évènements A et B de probabilités non nulles, on a :

C'est le contexte qui induira de représenter la situation par un arbre ou l'autre.

Exemple 2. Soient A et B deux événements non impossibles.

On donne $P(A) = \frac{1}{4}$ et $P_A(B) = \frac{2}{5}$. Une autre information est donnée par l'arbre de probabilités ci-dessous.



- 1. Compléter l'arbre de probabilités.
- 2. Déterminer $P(\overline{A} \cap B)$.

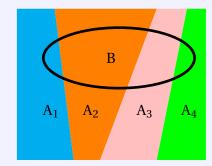
II Probabilités totales

Définition 2 : Partition de l'univers

On dit que des événements A_1 , A_2 , ..., A_n forment une **partition de l'univers** Ω si

- ces événements sont **deux à deux incompatibles**, c'est-à-dire pour tout i, j avec $1 \le i, j \le n$ et $i \ne j$, on a $A_i \cap A_j = \emptyset$
- ces événements **recouvrent** Ω , c'est-à-dire $A_1 \cup A_2 \cup ... \cup A_n = \Omega$.

Illustration pour n = 4 (le rectangle représente l'univers)



Si B est un événement, alors $A_1 \cap B$, $A_2 \cap B$, ..., $A_n \cap B$ forment une partition de B

Propriété 5 : Formule des probabilités totales

Soient A_1 , A_2 , ..., A_n des événements non-vides formant une partition de l'univers Ω .

Pour tout événement B, on a $P(B) = \dots$

 $\mathsf{Ainsi}\ P(B) = P(A_1) \times P_{A_1}(B) + P(A_2) \times P_{A_2}(B) + \ldots + P(A_n) \times P_{A_n}(B).$

Remarque 5. Pour tout événement A non-vide (ou impossible $A \neq \emptyset$) et non certain $(\overline{A} \neq \emptyset)$, A et \overline{A} forment toujours une partition de l'univers. On a donc pour tout événement B,

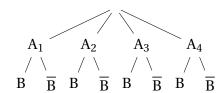
$$P(B) = P(A \cap B) + P(\overline{A} \cap B) = P(A) \times P_A(B) + P(\overline{A}) \times P_{\overline{A}}(B).$$

Remarque 6. Cette définition formalise la règle 3 sur les arbres pondérés.

Exemple 3.

Par exemple, pour n = 4, on a

$$P(B) = P(A_1) \times P_{A_1}(B) + P(A_2) \times P_{A_2}(B) + P(A_3) \times P_{A_3}(B) + P(A_4) \times P_{A_4}(B)$$

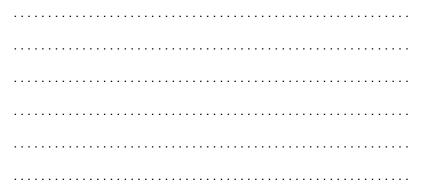


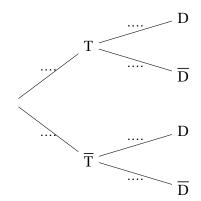
Exemple 4. Tous les élèves de Terminale ont passé un certificat de langues. 80% ont réussi le test, Parmi ceux qui ont réussi le test, 95% n'ont jamais redoublé.

Parmi ceux qui ont échoué, 2% n'ont jamais redoublé.

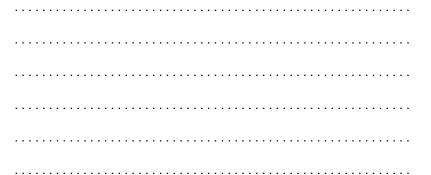
On note T: « L'élève a réussi le test » et D: « L'élève a redoublé »

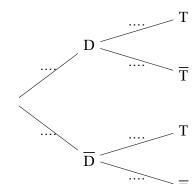
1. La probabilité qu'un élève n'ait pas redoublé est





2. La probabilité qu'un élève n'ait pas réussi le test sachant qu'il n'a pas redoublé est





3. La probabilité qu'un élève ait réussi le test sachant qu'il a redoublé est

.....

III Indépendance de deux événements

Définition 3 : Indépendance de deux événements

Considérons deux événements de probabilités A et B, de l'univers Ω .

Si $P_A(B) = P(B)$, c'est-à-dire si la réalisation ou non de l'événement A ne modifie pas la probabilité de B, on dit que B est **indépendant** de A.

Ainsi $P_B(A) = P(A)$ donc l'événement A est indépendant de l'événement B.

On en déduit que B est indépendant de A si et seulement si A est indépendant de B.

Propriété 6 : caractérisation de l'indépendance

Deux événements A et B de probabilités non nulles sont indépendants si et seulement si

$$P_A(B) = P(B)$$
 ou $P_B(A) = P(A)$

Deux événementsA et B de probabilités non nulles sont indépendants si et seulement si

$$P(A \cap B) = P(A) \times P(B)$$

Remarque 8. Ne pas confondre événements incompatibles et événements indépendants.

Exemple 5. Montrer que A et B sont indépendants étant données les probabilités données ci-dessous.

	A	Ā	Total	$P(A \cap B) = \dots$
В	0,3	0,1	0,4	$P(A) \times P(B) = \dots$
$\overline{\mathrm{B}}$	0,45	0,15	0,6	Comme
Total	0,75	0,25	1	Alors les événements A et B sont

Propriété 7 : Indépendance et événements contraires

Si deux événements A et B sont indépendants alors il en est de même pour les événements \overline{A} et B, ainsi que pour \overline{A} et \overline{B} .

 $\underline{\text{D\'{e}monstration}} \quad \text{On d\'{e}montre cette propri\'et\'e pour \overline{A} et B. La m\'{e}thode est similaire pour les autres cas.}$

On sait que
$$P(\overline{A} \cap B) = P(B) \times P_B(\overline{A})$$
.

Comme
$$P_B(A) + P_B(\overline{A}) = 1$$
, alors $P_B(\overline{A}) = 1 - P_B(A)$.

D'où
$$P(\overline{A} \cap B) = P(B) \times (1 - P_B(A)).$$

Or, comme A et B sont indépendants, $P_B(A) = P(A)$,

donc on a
$$P(\overline{A} \cap B) = P(B) \times (1 - P(A))$$
.

On en déduit que $P(\overline{A} \cap B) = P(B) \times P(\overline{A})$, ce qui prouve que \overline{A} et B sont indépendants.