

Succession d'épreuves indépendantes et loi binomiale

I Notions abordées

- Modèle de la succession dépreuves indépendantes : la probabilité dune issue $(x_1; ...; x_n)$ est égale au produit des probabilités des composantes x_i .
- Représentation par un produit cartésien, par un arbre.
- Épreuve de Bernoulli, loi de Bernoulli.
- Schéma de Bernoulli : répétition de n épreuves de Bernoulli indépendantes.
- Loi binomiale B(n; p): loi du nombre de succès. Expression à laide des coefficients binomiaux.

Démonstrations à savoir :

• Expression de la probabilité de k succès dans le schéma de Bernoulli.

Exemples dalgorithme

- Simulation de la planche de Galton.
- Problème de la surréservation. Étant donné une variable aléatoire binomiale X et un réel strictement positif
 α, détermination du plus petit entier k tel que p(X > k) ≤ α.
- Simulation dun échantillon dune variable aléatoire.

II Méthodes à travailler

- Méthode 1, page 369 : Modéliser une succéssion d'épreuves
- Méthode 2, page 371 : Identifier, représenter et utiliser un schema de Bernoulli
- Méthode 3, page 373 : Reconnaître la loi binomiale et calculer une probabilité de la forme p(X = k)
- Méthode 4, page 373 : Calculer des probabilités avec la loi binomiale
- Méthode 5, page 375 : Utiliser l'espérence et l'écart-type de la loi binomiale
- Méthode 6, page 377 : Prévoir si un événement sera vérifié à un seuil donné
- Méthode 8, page 378 : Déterminer le plus petit entier k tel que $p(X \le k) \ge p$
- Méthode 9, page 379 : Déterminer le plus grand entier k tel que $p(X \ge k) \ge p$

III Parcours d'exercices et de problèmes - page 365 à 401

Série 1 – Exercices d'application	
Indépence ou non	32; 33; 34; 35; 36
Loi de Bernoulli	39; 40; 41; 42; 43; 44; 45
Algorithme	46; 47
Schema de Bernoulli	49; 50; 51
Loi binomiale	52; 53; 55; 56
Calcul de probabilité	57; 58; 60; 61; 62; 63
Espérance et variance	65; 66; 67; 68; 69; 71
<u>Série 2 – Problèmes</u>	
Schema de Bernoulli	77; 78; 79; 80
Loi binomiale	81; 82; 83; 84
Calcul de probabilités	85; 86; 87; 88; 89; 90; 91; 92
Determiner k	94; 95; 96; 98; 99
Problème de seuil	103; 104; 105; 106
Divers	107; 108; 110; 112; 115; 116; 117; 118
Série 3 – Approfondissement	
Avec des suites	133
Divers MPSI et PCSI	135; 137; 138
Loi de poisson	140
<u>Série 4 – TP</u>	
Calculatrice et loi binomiale	
Choisir le bon nombre	
Un train bien rempli	
La planche de Galton	

IV Pistes pour le Grand Oral

- Probabilités conditionnelles, problème de fiabilité
- Probabilités conditionnelles et des suites
- Comparaison des résultats théoriques d'une situation aléatoire à ceux renvoyés par plusieurs simulations
- Application de la planche de Galton