

1

Nom et prénom :

Exercice 1.

- 1. Déterminer la solution générale de l'équation y' + 3y = 0
- 2. Déterminer la solution unique vérifiant la condition initiale : y(0) = 4

Correction

1.
$$y' + 3y = 0 \Leftrightarrow y' = -3y$$

Donc la forme générale : $y(x) = k e^{-3x}$, $k \in \mathbb{R}$

2. La solution générale de l'équation est : $y = k e^{-3x}$

Or
$$y(0) = 4 \Rightarrow ke^0 = 4 \Rightarrow k = 4$$

Donc
$$y(x) = 4e^{-3x}$$

Exercice 2.

- 1. Déterminer la solution générale de l'équation y' + 4y = 5
- 2. Déterminer la solution unique vérifiant la condition initiale : y(0) = 1

Correction

1.
$$y' + 4y = 5 \Leftrightarrow y' = -4y + 5$$

Alors la fonction constante $x \mapsto \frac{5}{4}$ est une solution particulière de l'équation y' + 4y = 5

Donc la forme générale : $y(x) = k e^{-4x} + \frac{5}{4}$, $k \in \mathbb{R}$

2. La solution générale de l'équation est : $y = k e^{-4x} + \frac{5}{4}$

Or
$$y(0) = 1 \Rightarrow k e^0 + \frac{5}{4} = 1 \Rightarrow k = 1 - \frac{5}{4} = -\frac{1}{4}$$

Donc
$$y = -\frac{1}{4}e^{-4x} + \frac{5}{4}$$

Exercice 3.

- 1. Déterminer la solution générale de l'équation y' + 5y = 0
- 2. Déterminer la solution unique vérifiant la condition initiale : y(0) = 2

Correction

1.
$$y' + 5y = 0 \Leftrightarrow y' = -5y$$

Donc la forme générale : $y(x) = k e^{-5x}$, $k \in \mathbb{R}$

2. La solution générale de l'équation est : $y = k e^{-5x}$

Or
$$y(0) = 2 \Rightarrow ke^0 = 2 \Rightarrow k = 2$$

Donc
$$y(x) = 2e^{-5x}$$

Exercice 4.

- 1. Déterminer la solution générale de l'équation y' + 5y = 6
- 2. Déterminer la solution unique vérifiant la condition initiale : y(0) = 1

Correction

1.
$$y' + 5y = 6 \Leftrightarrow y' = -5y + 6$$

Alors la fonction constante $x \mapsto \frac{6}{5}$ est une solution particulière de l'équation y' + 5y = 6

Donc la forme générale :
$$y(x) = k e^{-5x} + \frac{6}{5}$$
, $k \in \mathbb{R}$

2. La solution générale de l'équation est :
$$y = k e^{-5x} + \frac{6}{5}$$

Or
$$y(0) = 1 \Rightarrow k e^0 + \frac{6}{5} = 1 \Rightarrow k = 1 - \frac{6}{5} = -\frac{1}{5}$$

Donc $y = -\frac{1}{5}e^{-5x} + \frac{6}{5}$

Donc
$$y = -\frac{1}{5}e^{-5x} + \frac{6}{5}$$