

Correction exercices : Equations différentielles

Exercice 1. Équations homogènes à coefficients constants

- 1. Déterminer la solution générale de l'équation y' + 2y = 0
- 2. Déterminer la solution unique vérifiant la condition initiale : y(0) = 2

Correction

1.
$$y' + 2y = 0 \Leftrightarrow y' = -2y$$

Donc la forme générale : $y(x) = ke^{-2x}$, $k \in \mathbb{R}$

2. La solution générale de l'équation est : $y = k e^{-2x}$

Or
$$y(0) = 2 \Rightarrow ke^0 = 2 \Rightarrow k = 2$$

Donc
$$y(x) = 2e^{-2x}$$

Exercice 2. Équations avec second membre à coefficients constants

- 1. Déterminer la solution générale de l'équation y' + 2y = 3
- 2. Déterminer la solution unique vérifiant la condition initiale : y(0) = -1

Correction

1.
$$y' + 2y = 3 \Leftrightarrow y' = -2y + 3$$

Alors la fonction constante $x \mapsto \frac{3}{2}$ est une solution particulière de l'équation y' + 2y = 3

Donc la forme générale :
$$y(x) = ke^{-2x} + \frac{3}{2}, k \in \mathbb{R}$$

2. La solution générale de l'équation est : $y = ke^{-2x} + \frac{3}{2}$

Or
$$y(0) = -1 \Rightarrow k e^0 + \frac{3}{2} = -1 \Rightarrow k = -\frac{5}{2}$$

Donc
$$y(x) = -\frac{5}{2}e^{-2x} + \frac{3}{2}$$

Exercice 3. Équations à coefficients constants avec second membre variable

- 1. Déterminer la solution générale de l'équation y'-2y=-4t
- 2. Déterminer la solution unique vérifiant la condition initiale : y(0) = 3

Correction

1. Les solutions de l'équation différentielle homogène : y'-2y=0 sont : $y=k\times e^{2t}$, $k\in\mathbb{R}$ Par ailleurs, l'équation a une unique solution particulière polynomiale, de degré 1, P(t)=At+B

$$A - 2(At + B) = -4t \Leftrightarrow -2A = -4, A - 2B = 0 \Leftrightarrow A = 2, B = 1$$

donc
$$P(t) = 2t + 1$$

La solution générale de l'équation y'-2y=-4t est par conséquent : $y=2t+1+k\times e^{2t}$, $k\in\mathbb{R}$.

2. Elle vérifie y(0) = 1 + k donc la condition initiale y(0) = 3 équivaut à k = 2.

L'unique solution est alors : $y = 2t + 1 + 2 \times e^{2t}$

Exercice 4.

On considère l'équation différentielle (1) : $y' + y = 2e^{-x}$ dans laquelle y désigne une fonction inconnue de la variable réelle x, dérivable sur l'ensemble \mathbb{R} .

- 1. Résoudre l'équation différentielle (2) : y' + y = 0.
- 2. Soit la fonction g définie sur \mathbb{R} par $g(x) = 2xe^{-x}$. Vérifier que g est solution de l'équation (1).
- 3. On admet que toute solution h de (1) s'écrit sous la forme f+g, où f désigne une solution de l'équation (2) et g est la fonction ci-dessus.
 - (a) Déterminer la forme des solutions de l'équation (1).
 - (b) Déterminer la solution h de l'équation (1) vérifiant la condition initiale h(0) = -1.

Correction

1. On reconnaît une équation différentielle du type y' = ay avec a = -1,

d'où les solutions cherchées : $f(x) = ke^{-x}$ avec $k \in \mathbb{R}$

2. $g'(x) = 2e^{-x} - 2xe^{-x}$ donc $g'(x) + g(x) = 2e^{-x} - 2xe^{-x} + 2xe^{-x} = 2e^{-x}$

d'où g est solution de l'équation (1)

- 3. (a) $h(x) = f(x) + g(x) = ke^{-x} + 2xe^{-x}$ soit $h(x) = (k+2x)e^{-x}$
 - (b) $h(0) = -1 \iff (k+2 \times 0)e^0 = -1 \iff k = -1.$

D'où : $h(x) = (2x - 1)e^{-x}$

Exercice 5.

1. Déterminer la solution générale de l'équation $2y' - y = -t^2 + 5t$.

2. Déterminer la solution unique vérifiant la condition initiale : y(-1) = 5.

Correction

- 1. Les solutions de l'équation différentielle homogène : 2y'-y=0 sont : $y(t)=k\times e^{\frac{t}{2}}, k\in\mathbb{R}$. Par ailleurs, l'équation a une unique solution particulière polynomiale, de degré 2, $P(t)=At^2+Bt+C$. $2(2At+B)-(At^2+Bt+C)=-t^2+5t\Leftrightarrow -A=-1, 4A-B=5, 2B-C=0\Leftrightarrow A=1, B=-1, C=-2$ donc $P(t)=t^2-t-2$. La solution générale de l'équation $2y'-y=-t^2+5t$ est par conséquent : $y(t)=t^2-t-2+k\times e^{\frac{t}{2}}, k\in\mathbb{R}$.
- 2. Elle vérifie $y(-1) = k \times e^{\frac{-1}{2}}$ donc la condition initiale y(-1) = 5 équivaut à $k = 5 \times e^{\frac{1}{2}}$. L'unique solution est alors :

$$y(t) = t^2 - t - 2 + 5 \times e^{\frac{1+t}{2}}.$$