

Nom et prénom :

Exercice 1. 4 points

• Simplifier au maximum l'écriture de l'expression suivante : $A = ln(2) + ln(16e) - ln(4e^2)$

$$\begin{vmatrix} A = \ln(2) + \ln(16e) - \ln(4e^2) \\ A = \ln(2) + \ln(2^4) + \ln(e) - (\ln(2^2) + \ln(e^2)) \\ A = \ln(2) + 4\ln(2) + \ln(e) - 2\ln(2) - 2\ln(e)) \\ A = 3\ln(2) + 1 - 2 \\ \hline A = 3\ln(2) - 1 \end{vmatrix}$$

• Exprimer le nombre suivant en fonction de $\ln(3)$ et $\ln(5)$: $B = \ln\left(\frac{\sqrt{3}}{15}\right)$

$$B = \ln\left(\frac{\sqrt{3}}{15}\right) = \ln(\sqrt{3}) - \ln(15) = \frac{1}{2}\ln(3) - \ln(3 \times 5) = \frac{1}{2}\ln(3) - \ln(3) - \ln(5) = -\frac{1}{2}\ln(3) - \ln(5)$$

Exercice 2. 7,5 points

• Résoudre l'équation suivante en précisant l'ensemble d'existence : $e^{4x+5} - 5 = 0$

Ensemble d'existence : $]-\infty;+\infty[$

Résolution:

Pour tout réel x.

$$e^{4x+5}-5=0 \Leftrightarrow e^{4x+5}=5 \quad \text{ car In(e)}{=}1$$

 \Leftrightarrow ln(e^{4x+5}) = ln(5) car la fonction logarithme népérien est strictement croissante sur \mathbb{R}^{*+}

 $\Leftrightarrow 4x + 5 = \ln(5)$ car pour tous réels a et b strictement positifs : $\ln a \le \ln b$ équivaut à $a \le b$

$$\Leftrightarrow x = \frac{\Pi(5) - 5}{4}$$

• Résoudre l'equation suivante en précisant l'ensemble d'existence : $2\ln(x) = \ln(2-x)$

Ensemble d'existence : E =]0;2[

puisque

- ln(x) donc x > 0
- ln(2-x) donc $2-x>0 \iff 2>x$

Résolution :

Pour tout réel $x \in]0;2[$,

$$2\ln(x) = \ln(2-x) \Leftrightarrow \ln(x^2) = \ln(2-x)$$

 $\Leftrightarrow x^2 = 2 - x$ car pour tous réels a et b strictement positifs : $\ln a = \ln b$ équivaut à a = b $\Leftrightarrow x^2 + x - 2 = 0$

On cherche donc les solutions de $x^2 + x - 2 = 0$.

on détermine le discriminant $\Delta = b^2 - 4ac = 1^2 - 4 \times (-2) = 1 + 8 = 9 > 0$

Le discriminant étant positif, le polynôme admet deux racines réelles :

$$x_1 = \frac{-b - \sqrt{\Delta}}{2a} = \frac{-1 - 3}{2} = \frac{-4}{2} = -2$$
 et

et
$$x_2 = \frac{-b + \sqrt{\Delta}}{2a} = \frac{-1 + 3}{2} = \frac{2}{2} = 1.$$
 On obtient deux solutions possibles : 1 et -2

Conclusion: Comme $1 \in]0;2[$ et $-2 \notin]0;2[$ alors $S = \{1\}$

• Résoudre l'inéquation suivante en précisant l'ensemble d'existence : $1 - 2\ln(2x) \ge 0$

Ensemble d'existence : $]0; +\infty[$ car x > 0

Résolution :

Pour tout réel x > 0,

$$1 - 2\ln(2x) \ge 0 \quad \Leftrightarrow \quad 1 \ge 2\ln(2x)$$

$$\Leftrightarrow \quad \frac{1}{2} \ge \ln(2x)$$

$$\Leftrightarrow \quad \ln\left(e^{\frac{1}{2}}\right) \ge \ln(2x)$$

$$\Leftrightarrow \quad e^{\frac{1}{2}} \ge 2x$$

$$\Leftrightarrow \quad \sqrt{e} \ge 2x$$

$$\Leftrightarrow \quad \frac{\sqrt{e}}{2} \ge x$$

Solution possible : $x \le \frac{\sqrt[2]{e}}{2}$ <u>Conclusion :</u> Comme $x \in]0; +\infty[$ alors $S = \left[0; \frac{\sqrt{e}}{2}\right]$

Exercice 3. 2,5 points

Déterminer le plus petit entier n tel que $500 \times 0.7^n \le 1$.

On a
$$500 \times 0, 7^n \le 1$$
 \Leftrightarrow $0, 7^n \le \frac{1}{500}$ \Leftrightarrow $0, 7^n \le 0,002$ \Leftrightarrow $\ln(0, 7^n) \le \ln(0,002)$ car la fonction ln est strictement croissante sur $]0; +\infty[$ \Leftrightarrow $n \times \ln(0,7) \le \ln(0,002)$ \Leftrightarrow $n \ge \frac{\ln(0,002)}{\ln(0,7)}$ car $\ln(0,7) < 0$

Or
$$\frac{\ln(0,002)}{\ln(0,7)} \approx 17,42$$

Or $\frac{\ln{(0,002)}}{\ln{(0,7)}} \approx 17,42$ Donc le plus petit entier n tel que $500 \times 0,7^n \le 1$ est 18.

Exercice 4. 6 points

Soit f la fonction définie sur l'intervalle $]0;+\infty[$ par $f(x)=\frac{x}{3}-2\ln(x)$ et dont la courbe représentative \mathscr{C}_f .

- 1. On note f' la fonction dérivée de la fonction f. Calculer f'(x).
- 2. Donner le tableau des variations de f. On précisera la valeur exacte du minimum de f.
- 3. Déterminer une équation de la tangente T_1 à la courbe \mathscr{C}_f au point d'abscisse 1.

Soit f la fonction définie sur l'intervalle $]0; +\infty[$ par $f(x) = \frac{x}{3} - 2\ln(x)$.

1. On a $f(x) = \frac{x}{3} - 2\ln(x)$ sur $]0; +\infty[$

Alors la fonction f est dérivable sur $]0;+\infty[$ comme somme de fonctions dérivables.

D'où
$$f'(x) = \frac{1}{3} - 2\frac{1}{x} - \frac{x-6}{3x}$$
Donc $f'(x) = \frac{x-6}{3x}$

2. Les variations de la fonction f se déduisent du signe de sa dérivée.

On a
$$f'(x) = \frac{x-6}{3x}$$

Or sur l'intervalle $]0; +\infty[$, f'(x) est du même signe que x-6

D'où le tableau établissant le signe de la dérivée ainsi que les variations de f

x	0	6 +∞
x-6 $f'(x)$		- 0 +
Variation de f		2 – 2ln(6)

D'après le tableau des variations f admet un minimum atteint pour x = 6 et $f(6) = 2 - 2\ln(6)$

3. On cherche \mathcal{T}_{∞} la tangente à \mathscr{C}_f au point d'abscisse 1.

On a
$$\mathcal{T}_{\infty}$$
: $y = f'(1)(x-1) + f(1)$
avec $f'(1) = \frac{1-6}{3} = -\frac{5}{3}$
et $f(1) = \frac{1}{3} - 2\ln(1) = \frac{1}{3}$

D'où T₁:
$$y = -\frac{5}{3}(x-1) + \frac{1}{2}$$

 $y = -\frac{5}{3}x + \frac{5}{3} + \frac{1}{3}$
 $y = -\frac{5}{3}x + \frac{6}{3}$
 $y = -\frac{5}{3}x + 2$

Donc l'équation de la tangente T_1 à la courbe \mathscr{C}_f au point d'abscisse 1 est $y = -\frac{5}{3}x + 2$