

Exercice 1. 4 points

• Simplifier au maximum l'écriture de l'expression suivante : $A = \frac{\ln(6) - \ln(12)}{2\ln(\sqrt{2})}$

$$A = \frac{\ln(6) - \ln(12)}{2\ln(\sqrt{2})} = \frac{\ln(6) - \ln(2 \times 6)}{2 \times \frac{1}{2}\ln(2)} = \frac{\ln(6) - (\ln(2) + \ln(6))}{\ln(2)} = \frac{\ln(6) - \ln(2) - \ln(6)}{\ln(2)} = \frac{-\ln(2))}{\ln(2)} = \boxed{-1}$$

• Ecrire le nombre B à l'aide d'un seul logarithme : $B = 2\ln(3) + \ln(2) - \ln\left(\frac{1}{2}\right) - 3$

$$\begin{vmatrix} B = 2\ln(3) + \ln(2) - \ln\left(\frac{1}{2}\right) - 3 \\ B = \ln(3^2) + \ln(2) - (-\ln(2)) - 3\ln(e) \\ B = \ln(3^2) + \ln(2) + \ln(2) - \ln(e^3) \\ B = \ln(9 \times 2 \times 2) - \ln(e^3) \\ B = \ln\left(\frac{36}{e^3}\right) \end{vmatrix}$$

Exercice 2. 7,5 points

• Résoudre l'équation suivante en précisant l'ensemble de d'existence : $e^{2x+3}-3=0$

Ensemble d'existence : $]-\infty;+\infty[$

Résolution :

Pour tout réel x,

$$e^{2x+3} - 3 = 0 \Leftrightarrow e^{2x+3} = 3$$
 car $ln(e)=1$

 $\Leftrightarrow \ln(e^{2x+3}) = \ln(3)$ car la fonction logarithme népérien est strictement croissante sur $]0; +\infty[$

 $\Leftrightarrow 2x + 3 = \ln(3)$ car pour tous réels a et b strictement positifs : $\ln a = \ln b$ équivaut à a = b

$$\Leftrightarrow x = \frac{2}{2}$$

$$\ln(3) - 3$$

• Résoudre l'equation suivante en précisant l'ensemble d'existence : $2\ln(x) = \ln(6-x)$

Ensemble d'existence : E =]0;6[

puisque

- ln(x) donc x > 0
- $\ln(6-x)$ donc $6-x>0 \iff 6>x$

Résolution :

Pour tout réel $x \in]0;6[$,

$$2\ln(x) = \ln(6-x) \Leftrightarrow \ln(x^2) = \ln(6-x)$$

 $\Leftrightarrow x^2 = 6 - x$ car pour tous réels a et b strictement positifs : $\ln a = \ln b$ équivaut à a = b $\Leftrightarrow x^2 + x - 6 = 0$

On cherche donc les solutions de $x^2 + x - 6 = 0$,

on détermine le discriminant $\Delta = b^2 - 4ac = 1^2 - 4 \times (-6) = 1 + 24 = 25 > 0$

Le discriminant_étant positif, le polynôme admet deux racines réelles :

$$x_1 = \frac{-b - \sqrt{\Delta}}{2a} = \frac{-1 - 5}{2} = \frac{-6}{2} = -3$$

$$-b + \sqrt{\Delta}$$
 $-1 + 5$

 $x_2 = \frac{-b + \sqrt{\Delta}}{2a} = \frac{-1 + 5}{2} = \frac{4}{2} = 2.$ On obtient deux solutions possibles : 2 et -3

Conclusion: Comme $2 \in]0;6[$ et $-3 \notin]0;6[$ alors $|S = \{2\}|$

• Résoudre l'inéquation suivante en précisant l'ensemble d'existence : $2\ln(x-1)-1 \le 0$

Ensemble d'existence :]1; $+\infty$ [car x-1>0

Résolution :

Pour tout réel x > 1,

$$2\ln(x-1) - 1 \ le0 \quad \Leftrightarrow \ln(x-1) \le \frac{1}{2}$$

$$\Leftrightarrow 2\ln(x-1) \le 1$$

$$\Leftrightarrow \ln(x-1) \le \frac{1}{2}$$

$$\Leftrightarrow \ln(x-1) \le \ln\left(e^{\frac{1}{2}}\right)$$

$$\Leftrightarrow x-1 \le e^{\frac{1}{2}}$$

$$\Leftrightarrow x-1 \le \sqrt{e}$$

$$\Leftrightarrow x \le 1 + \sqrt{e}$$

$$x \le 1 + \sqrt{e}$$

Solution possible : $x \le 1 + \sqrt{e}$ <u>Conclusion :</u> Comme $x \in]1; +\infty[$ alors $S =]1; 1 + \sqrt{e}$

Exercice 3. 2,5 points

Déterminer le plus petit entier n tel que $50 \times 0.9^n \le 0.1$.

On a
$$50 \times 0.9^n \le 0.01$$
 $\Leftrightarrow 0.9^n \le \frac{0.1}{50}$
 $\Leftrightarrow 0.9^n \le 0.002$
 $\Leftrightarrow \ln(0.9^n) \le \ln(0.002)$ car la fonction ln est strictement croissante sur $]0; +\infty[$
 $\Leftrightarrow n \times \ln(0.9) \le \ln(0.002)$
 $\Leftrightarrow n \ge \frac{\ln(0.002)}{\ln(0.9)}$ car $\ln(0.9) < 0$

Or
$$\frac{\ln(0,002)}{\ln(0,9)} \approx 58,98$$

Donc le plus petit entier n tel que $50 \times 0.9^n \le 0.1$ est 59.

Exercice 4. 6 points

Soit f la fonction définie sur l'intervalle $]0;+\infty[$ par $f(x)=2\ln(x)-\frac{x}{2}$ et dont la courbe représentative \mathscr{C}_f .

- 1. On note f' la fonction dérivée de la fonction f. Calculer f'(x).
- 2. Donner le tableau des variations de f. On précisera la valeur exacte du maximum de f.
- 3. Déterminer une équation de la tangente T_1 à la courbe \mathscr{C}_f au point d'abscisse 1.

Soit f la fonction définie sur l'intervalle]0; $+\infty$ [par $f(x) = 2\ln(x) - \frac{x}{2}$.

1. On a $f(x) = 2\ln(x) - \frac{x}{2} \text{ sur }]0; +\infty[$

Alors la fonction f est dérivable sur $]0;+\infty[$ comme somme de fonctions dérivables.

D'où
$$f'(x) = 2\frac{1}{x} - \frac{1}{2} = \frac{4-x}{2x}$$

Donc
$$f'(x) = \frac{4-x}{2x}$$

2. Les variations de la fonction f se déduisent du signe de sa dérivée.

On a
$$f'(x) = \frac{4-x}{2x}$$

Or sur l'intervalle $]0;+\infty[$, f'(x) est du même signe que 4-x

D'où le tableau établissant le signe de la dérivée ainsi que les variations de f

		tablicoant to signe de la delivee ania
x	0	4 +∞
$\begin{array}{c} 4 - x \\ f'(x) \end{array}$		+ 0 -
Variation de f		2ln(4) - 2

D'après le tableau des variations, f admet un maximum atteint pour x = 4 et $f(4) = 2\ln(4) - 2$

3. On cherche \mathcal{T}_1 la tangente à \mathscr{C}_f au point d'abscisse 1.

On a
$$\mathcal{T}_1$$
: $y = f'(1)(x-1) + f(1)$

avec
$$f'(1) = \frac{4-1}{2} = \frac{3}{2}$$

et
$$f(1) = 2\ln(1) - \frac{1}{2} = -\frac{1}{2}$$

D'ou
$$T_1: y = \frac{3}{2}(x-1) - \frac{1}{2}$$

$$y = \frac{3}{2}x - \frac{3}{2} - \frac{1}{2}$$
$$y = \frac{3}{2}x - \frac{4}{2}$$

$$y = \frac{3}{2}x - \frac{4}{2}$$

$$y = \frac{3}{2}x - 2$$

Donc l'équation de la tangente T_1 à la courbe \mathscr{C}_f au point d'abscisse 1 est $y = \frac{3}{2}x - 2$