Terminale : Spé Mathématiques Interrogation - sujet B - correction

Nom et prénom :

Exercice 1. 4 points

• Simplifier l'écriture de l'expression suivante : $A = \frac{\ln(e)}{\ln(e^2)} + \ln\left(\frac{1}{e}\right)$

$$A = \frac{\ln(e)}{\ln(e^2)} + \ln\left(\frac{1}{e}\right)$$

• Exprimer le nombre suivant en fonction de $\ln 2$ et $\ln 3$: $B = \ln (216) - \ln (9)$

Exercice 2. 6 points

• Résoudre l'équation suivante où x désigne un nombre réel : $e^{3-2x} - 2 = 0$

Ensemble de définition :] $-\infty$; $+\infty$ [

Résolution:

Pour tout réel x,

$$e^{3-2x} - 2 = 0 \Leftrightarrow e^{3-2x} = 2$$
 car $ln(e)=1$

- $\Leftrightarrow \ln(e^{3-2x}) = \ln(2)$ car la fonction logarithme népérien est croissante
- car pour tous réels a et b strictement positifs : $\ln a \le \ln b$ équivaut à $a \le b$

 $\Leftrightarrow x = \frac{3 - \ln(2)}{2}$ Conclusion: $S = \left\{ \frac{3 - \ln(2)}{2} \right\}$

• Résoudre l'inéquation suivante où x désigne un nombre réel : $2 \ln(x-1) \le 1$

Ensemble de définition :]1; $+\infty$ [car x-1>0

Résolution:

Pour tout réel x > 0,

$$2 \ln(x-1) \le 1 \Leftrightarrow \ln(x-1) \le \frac{1}{2} \Leftrightarrow \ln(x-1) \le \ln(e^{\frac{1}{2}})$$

 $\Leftrightarrow x-1 \le e^{\frac{1}{2}}$ Pour tous réels a et b strictement positifs : $\ln a \le \ln b$ équivaut à $a \le b$

$$\Leftrightarrow x \le 1 + \sqrt{e}$$

 $\Leftrightarrow x \le 1 + \sqrt{e}$ Conclusion: $S = [1; 1 + \sqrt{e}]$

Exercice 3. 3 points

Déterminer le plus petit entier n tel que $1,05^n \ge 1,5$.

$$1,05^n \ge 1,5 \Leftrightarrow \ln(1,05^n) \ge \ln(1,5)$$
 car la fonction ln est strictement croissante $\Leftrightarrow n \ln(1,05) \ge \ln(1,5)$ $\Leftrightarrow n \ge \frac{\ln(1,5)}{\ln(1,05)}$ Or $\frac{\ln(1,5)}{\ln(1,05)} \approx 8,3$ Donc [le plus petit entier n tel que $1,05^n \ge 1,5$ est 9 .

Exercice 4. 7 points

Soit f une fonction définie sur l'intervalle]0;8] par $f(x) = -x^2 + 11x - 9 \ln(x)$.

Etudier les variations de la fonction f sur]0;8]. On note f' la dérivée de la fonction f.

1. On détermine la dérivée f' de la fonction f.

On a
$$f(x) = -x^2 + 11x - 9 \ln(x)$$

Alors la fonction f est dérivable sur]0;8]

Alors pour tout réel x de l'intervalle $]0;8]: f'(x) = -2x + 11 - \frac{9}{x} = \frac{-2x^2 + 11x - 9}{x}$

2. On étudie le signe de la dérivée f'

Comme
$$f'(x) = \frac{-2x^2 + 11x - 9}{x}$$
 sur]0;8]

Alors f'(x) est du signe de $-2x^2 + 11x - 9$ puisque x > 0

Etudions le signe de $-2x^2 + 11x - 9$.

Son déterminant
$$\Delta = b^2 - 4ac = (11)^2 - 4 \times (-2) \times (-9) = 121 - 72 = 49$$

Son déterminant
$$\Delta = b^2 - 4ac = (11)^2 - 4 \times (-2) \times (-9) = 121 - 72 = 49$$

Les deux racines sont $x_1 = \frac{-b - \sqrt{\Delta}}{2a} = \frac{-11 - 7}{2 \times (-2)} = \frac{-18}{-4} = \frac{9}{2}$ et $x_1 = \frac{-b + \sqrt{\Delta}}{2a} = \frac{-11 + 7}{2 \times (-2)} = \frac{-4}{-4} = 1$

Comme $\Delta = 49 > 0$ et a = -2 < 0, on en déduit le tableau de signes

x	0		1		$\frac{9}{2}$		8
f'(x)		_	0	+	0	_	

3. On peut en déduire les variations de la fonction f

-					•		
x	()	1		$\frac{9}{2}$		8
f'(x)		_	0	+	0	_	
Variation de f			10	111/4	7 9ln (4	\	4 – 9ln(8)

Donc la fonction f est décroissante sur $]0;1] \cup \left[\frac{9}{2};8\right]$ et croissante sur $\left[1;\frac{9}{2};8\right]$