

Exercice 1. Déterminer les limites suivantes

1.
$$\lim_{n \to +\infty} \frac{3 + \frac{1}{\sqrt{n}}}{0, 1^n}$$

Correction

$$\lim_{n \to +\infty} \sqrt{n} = +\infty \Longrightarrow \lim_{n \to +\infty} \frac{1}{\sqrt{n}} = 0 \Longrightarrow \lim_{n \to +\infty} 3 + \frac{1}{\sqrt{n}} = 3$$
Par ailleurs, puisque $0 < 0, 1 < 1$, $\lim_{n \to +\infty} 0, 1^n = 0^+$.

On en déduit que $\lim_{n \to +\infty} \frac{3 + \frac{1}{\sqrt{n}}}{0.1^n} = +\infty$

2.
$$\lim_{n \to +\infty} \frac{-2n^3 - 5n^2}{3n^3 - 5}$$

Correction

Pour tout entier
$$n \ge 1$$
, on a $\frac{-2n^3 - 5n^2}{3n^3 + 5} = \frac{n^3 \left(-2 - \frac{5}{n}\right)}{n^3 \left(3 + \frac{5}{n^3}\right)} = \frac{-2 - \frac{5}{n}}{3 + \frac{5}{n^3}}$

Comme $\lim_{n \to +\infty} \frac{5}{n} = 0$ alors $\lim_{n \to +\infty} -2 - \frac{5}{n} = -2$

Et comme $\lim_{n \to +\infty} \frac{1}{n^3} = 0$, alors $\lim_{n \to +\infty} 3 + \frac{5}{n^3} = 3$

Par quotient des limites, $\lim_{n \to +\infty} \frac{-2n^3 - 5n^2}{3n^3 - 5} = -\frac{2}{3}$

Comme
$$\lim_{n \to +\infty} \frac{5}{n} = 0$$
 alors $\lim_{n \to +\infty} -2 - \frac{5}{n} = -2$

Et comme
$$\lim_{n \to +\infty} \frac{1}{n^3} = 0$$
, alors $\lim_{n \to +\infty} 3 + \frac{5}{n^3} = 3$

Par quotient des limites,
$$\lim_{n \to +\infty} \frac{-2n^3 - 5n^2}{3n^3 - 5} = -\frac{2}{3}$$

3.
$$\lim_{n \to +\infty} \frac{2 + \sin n}{n}$$

Correction

Pour tout $n \in \mathbb{N}$, on a $-1 \le \sin n \le 1$

d'où
$$1 \le 2 + \sin n \le 3$$
 puis $0 \le \frac{1 + \sin n}{n} \le \frac{3}{n}$.
Comme $\lim_{n \to +\infty} \frac{1}{n} = 0$ et $\lim_{n \to +\infty} \frac{3}{n} = 0$,

Comme
$$\lim_{n \to +\infty} \frac{1}{n} = 0$$
 et $\lim_{n \to +\infty} \frac{3}{n} = 0$

d'après le théorème des gendarmes, on obtient que $\lim_{n \to +\infty} \frac{2 + \sin n}{n} = 0$

$$\lim_{n \to +\infty} \frac{2 + \sin n}{n} = 0$$

Exercice 2. Résoudre les équations et l'inéquation ci-dessous :

1.
$$ln(6-x) = 1$$

Correction

- Ensemble de définition :] $-\infty$; 6[car $6-x>0 \Leftrightarrow x<6$.
- Résolution : $\ln(6-x) = 1$ \Leftrightarrow $\ln(6-x) = \ln(e)$ \Leftrightarrow 6-x=e \Leftrightarrow x=6-e.
- Conclusion: comme x = 6 e < 6 donc $\mathcal{S} = \{6 e\}$

2.
$$e^{2x-5} = 3$$

Correction

- Ensemble de définition : R
- Résolution: $e^{2x-5} = 3 \iff 2x-5 = \ln 3 \iff x = \frac{\ln 3 + 5}{2}$.
- Conclusion: $\mathscr{S} = \left\{ \frac{\ln 3 + 5}{2} \right\}$
- 3. ln(x+6) < ln(-x+5)

Correction

- Ensemble de définition : E =]-6;5[car $x+6>0 \Leftrightarrow x>-6$ et $-x+5>0 \Leftrightarrow x<5$.
- Résolution: $\ln(x+6) < \ln(-x+5) \iff x+6 < -x+5$ (car ln est str. croissante sur]0; $+\infty$ [)

$$\iff 2x < -1$$

$$\iff x < -\frac{1}{2}$$

- Conclusion: comme $x \in]-6;5[$ et $x < -\frac{1}{2}$ donc $\mathcal{S} =]-6;-\frac{1}{2}[$
- 4. $\ln((x+3)(x-3)) = \ln(8x)$

Correction

• Ensemble de définition : $E =]3; +\infty[$

$$-(x+3)(x-3) > 0 \Leftrightarrow x \in]-\infty; -3[\cup]3; +\infty[.$$

- $-8x>0 \Leftrightarrow x>0$
- Résolution : Supposons $x \in E$.

$$\ln((x+3)(x-3)) = \ln(8x) \iff (x+3)(x-3) = 8x \iff x^2 - 9 = 8x \iff x^2 - 8x - 9 = 0.$$

 $\Delta = 100 > 0$ et l'équation $x^2 - 8x - 9 = 0$ a deux solutions : $x_1 = -1 \notin E$ et $x_2 = 9 \in E$.

- Conclusion : Comme E =]3; + ∞ [et $x_1 = -1 \notin E$ et $x_2 = 9 \in E$ alors l'ensemble des solution est donc $\mathscr{G} = \{9\}$
- **Exercice 3.** Exprimer le nombre A sous la forme $a \ln 5$ $A = 5 \ln(5) \ln(25) + \ln\left(\frac{1}{\sqrt{5}}\right)$

Correction

$$A = 5\ln(5) - \ln(25) + \ln\left(\frac{1}{\sqrt{5}}\right) = 5\ln(5) - \ln(5^2) - \ln\left(\sqrt{3}\right) = 5\ln(5) - 2\ln(5) - \frac{1}{2}\ln(5)$$

$$A = \frac{5}{2} \ln(5)$$