

Exercice 1. Déterminer les limites suivantes

1.
$$\lim_{n \to +\infty} \frac{5 - \frac{1}{\sqrt{n}}}{0.1^n}$$

Correction

$$\lim_{n \to +\infty} \sqrt{n} = +\infty \Longrightarrow \lim_{n \to +\infty} \frac{1}{\sqrt{n}} = 0 \Longrightarrow \lim_{n \to +\infty} 5 - \frac{1}{\sqrt{n}} = 5$$
Par ailleurs, puisque $0 < 0, 1 < 1, \lim_{n \to +\infty} 0, 1^n = 0^+$.

On en déduit que $\lim_{n \to +\infty} \frac{5 - \frac{1}{\sqrt{n}}}{0.1^n} = +\infty$

2.
$$\lim_{n \to +\infty} \frac{3n^3 - 5}{-2n^3 - 5n^2}$$

Correction

Pour tout entier
$$n \ge 1$$
, on a
$$\frac{3n^3 + 5}{-2n^3 - 5n^2} = \frac{n^3 \left(3 + \frac{5}{n^3}\right)}{n^3 \left(-2 - \frac{5}{n}\right)} = \frac{3 + \frac{5}{n^3}}{-2 - \frac{5}{n}}$$
Comme $\lim_{n \longrightarrow +\infty} \frac{5}{n^3} = 0$ et $\lim_{n \longrightarrow +\infty} \frac{5}{n} = 0$, on a $\lim_{n \longrightarrow +\infty} 3 + \frac{5}{n^3} = 3$ et $\lim_{n \longrightarrow +\infty} -2 - \frac{5}{n} = -2$, donc $\lim_{n \longrightarrow +\infty} \frac{3n^3 - 5}{-2n^3 - 5n^2} = -\frac{3}{2}$.

$$3. \lim_{n \to +\infty} \frac{1 + \sin n}{n}$$

Correction

Pour tout
$$n \in \mathbb{N}$$
, on a $-1 \le \sin n \le 1$ d'où $0 \le 1 + \sin n \le 2$ puis $0 \le \frac{1 + \sin n}{n} \le \frac{2}{n}$.

Comme $\lim_{n \longrightarrow +\infty} 0 = 0$ et $\lim_{n \longrightarrow +\infty} \frac{2}{n} = 0$, d'après le théorème des gendarmes, on obtient que $\lim_{n \longrightarrow +\infty} \frac{1 + \sin n}{n} = 0$.

Exercice 2. Résoudre les équations et l'inéquation ci-dessous :

1. ln(5-x) = 1

Correction

Condition: $5 - x > 0 \Leftrightarrow x < 5$.

Supposons x < 5. $ln(5-x) = 1 \Leftrightarrow 5-x = e \Leftrightarrow x = 5-e < 5$.

Donc $\mathcal{S} = \{5 - e\}.$

2. $e^{5x-4} = 4$

Correction

$$e^{5x-4} = 4 \iff 5x - 4 = \ln 4 \iff x = \frac{\ln 4 + 4}{5}.$$

Donc
$$\mathcal{S} = \left\{ \frac{\ln 4 + 4}{5} \right\}$$

3. $\ln(x+6) < \ln(-x+3)$

Correction

Condition: $x+6>0 \Leftrightarrow x>-6$ et $-x+3>0 \Leftrightarrow x<3$ on note E=]-6:3[.

Supposons $x \in E$. $\ln(x+6) < \ln(-x+3) \iff x+6 < -x+3$ (car ln est str. \nearrow .) Cette inéquation équivaut à 2x < -3 soit $x < -\frac{3}{2}$.

L'ensemble des solution est donc] – 6; – $\frac{3}{2}$ [

4. $\ln((x+3)(x-3)) = \ln(8x)$

Correction

Condition:

- $(x+3)(x-3) > 0 \Leftrightarrow x \in]-\infty; -3[\cup]3; +\infty[.$
- $8x > 0 \Leftrightarrow x > 0$.

On note $E =]3; +\infty[$.

Supposons $x \in E$. $\ln((x+3)(x-3)) = \ln(8x) \iff (x+3)(x-3) = 8x \iff x^2 - 9 = 8x \iff x^2 - 8x - 9 = 0$.

 $\Delta = 100 > 0$ et l'équation $x^2 - 8x - 9 = 0$ a deux solutions : $x_1 = -1 \notin E$ et $x_2 = 9 \in E$.

L'ensemble des solution est donc $\mathcal{S} = \{9\}$.

Exercice 3. Exprimer le nombre A sous la forme $a \ln 3$ $A = 5 \ln(3) - \ln(27) + \ln\left(\frac{1}{\sqrt{3}}\right)$

Correction

$$A = 5\ln(3) - \ln(27) + \ln\left(\frac{1}{\sqrt{3}}\right) = 5\ln(3) - \ln(3^3) - \ln\left(\sqrt{3}\right) = 5\ln(3) - 3\ln(3) - \frac{1}{2}\ln(3) = \frac{3}{2}\ln(3)$$