

# **Exercices: Logarithme népérien**

## Propriétés algébriques

**Exercice 1.** Simplifier.

2. 
$$e^{-\ln 5}$$

3. 
$$e^{\ln(\frac{1}{3})}$$

2. 
$$e^{-\ln 5}$$
 3.  $e^{\ln(\frac{1}{3})}$  4.  $\ln(e^5)$ 

5. 
$$ln1 + lne$$

6. 
$$ln(e^{-2})$$

**Exercice 2.** Exprimer chacun des nombres suivants sous la forme  $\ln c$  où c est un réel strictement positif.

1. 
$$A = \ln 7 + \ln 8$$

2. 
$$B = \ln 20 - \ln 4$$

3. 
$$C = -\ln 4 + \ln 28$$

4. 
$$E = -2 \ln 4$$

**Exercice 3.** Dans chacun des cas, comparer les réels A et B.

1. 
$$A = \ln 2 + \ln 5$$
 et  $B = \ln 9$ 

3. 
$$A = 3 \ln 2$$
 et  $B = 2 \ln 3$ 

2. 
$$A = \ln 4$$
 et  $B = \ln 6 - \ln 2$ 

4. 
$$A = \ln 25$$
 et  $B = 2 \ln 5$ 

Exercice 4. Calculer les nombres réels suivants.

1. 
$$\ln(0,5) + \ln 2$$

2. 
$$3 \ln 2 - \ln 4$$

3. 
$$(\ln(e^3))^2$$

4. 
$$e^{\ln 2 + \ln 3}$$

**Exercice 5.** Exprimer les nombres suivants sous forme d'un entier ou d'un inverse entier.

1. 
$$A = e^{2 \ln 3}$$

2. 
$$B = e^{4 \ln 2}$$

3. 
$$C = e^{-\ln 4}$$

4. 
$$D = e^{-5 \ln 2}$$

**Exercice 6.** Simplifier au maximum les expressions suivantes :

1. 
$$A = e^{\ln 6 - 2 \ln 3}$$

2. 
$$B = e^{3\ln 2 - \ln 4 + 1}$$

3. 
$$C = \frac{e^{\ln 5 - 1}}{e^{2 + \ln 5}}$$

4. 
$$D = \frac{e^{2\ln 3 - \ln 2}}{e^{-3\ln 2}}$$

**Exercice 7.** Exprimer chacun des nombres suivants sous la forme  $\ln c$  où c est un réel strictement positif.

1. 
$$A = 2 \ln 5 + \ln 3$$

2. 
$$B = 3 \ln 3 - 2 \ln 2$$

3. 
$$C = -\ln 5 + 3\ln 2$$

4. 
$$D = 3 \ln 4 - 3 \ln 2$$

**Exercice 8.** Exprimer chacun des nombres suivants en fonction de ln 2.

2. 
$$\ln(\sqrt{2})$$

3. 
$$\ln\left(\frac{1}{4}\right)$$

4. 
$$3\ln 2 - \ln 16$$

**Exercice 9.** Exprimer chacun des nombres suivants en fonction de ln2 et ln5.

3. 
$$\ln\left(\frac{4}{25}\right)$$

4. 
$$\ln\sqrt{10}$$



## П Équations

Exercice 10. Résoudre les équations suivantes.

1. 
$$e^x = 2$$

2. 
$$e^x = -5$$

3. 
$$e^x = \frac{1}{4}$$

**Exercice 11.** Résoudre les équations suivantes.

$$1. \ln x = \ln \left(\frac{1}{2}\right)$$

$$3. \ln x = -\ln 9$$

5. 
$$\ln x = -1$$
;

2. 
$$\ln x = \frac{\ln 5}{2}$$

4. 
$$\ln x = 2$$
;

6. 
$$3 \ln x - 9 = 0$$
.

Exercice 12. Résoudre les équations suivantes.

1. 
$$(\ln x - 2)(1 + \ln x) = 0$$

2. 
$$(e^x - 3)(e^x + 5) = 0$$

3. 
$$(\ln x)(6-3\ln x)=0$$

Exercice 13. Résoudre les équations suivantes :

1. 
$$2 + 3 \ln x = 14$$
;

2. 
$$\ln(x^2) = \ln 9$$
; 3.  $e^{2-3x} = 5$ ; 4.  $2e^{2x} - 10 = 0$ .

3. 
$$e^{2-3x} = 5$$
;

4. 
$$2e^{2x} - 10 = 0$$

**Exercice 14.** Résoudre les équations suivantes :

1. 
$$ln(2-x) + 1 = 0$$
;

2. 
$$\ln x + \ln(x-1) = \ln 5$$

2. 
$$\ln x + \ln(x-1) = \ln 5$$
; 3.  $\ln(3x) - \ln(1-x) = \ln 2$ .

**Exercice 15** (Changement de variable). 1. Résoudre l'équation  $X^2 - 2X - 15 = 0$ .

2. En déduire les solutions des équations suivantes :

(a) 
$$e^{2x} - 2e^x - 15 = 0$$
;

(b) 
$$(\ln x)^2 - 2\ln x - 15 = 0$$
.

Exercice 16. Résoudre les équations suivantes :

1. 
$$e^{2x} - 4e^x + 3 = 0$$

2. 
$$2(\ln x)^2 + 5\ln x - 3 = 0$$

### Inéquations

**Exercice 17.** Résoudre les inéquations suivantes.

1. 
$$ln(x) \ge 1$$

2. 
$$ln(x) > -2$$

3. 
$$\ln(x) \le \frac{1}{2}$$

4. 
$$ln(x) < 3$$

Exercice 18. Résoudre les inéquations suivantes :

1. 
$$\ln(2-3x) \ge 0$$
;

2. 
$$\ln(1-x) < 1$$
;

$$3. \ln\left(\frac{3}{x}\right) > \ln 3.$$

**Exercice 19.** Résoudre les inéquations suivantes :

1. 
$$2\ln(x) \ge \ln(2-x)$$
;

2. 
$$\ln(x) + \ln(2x+5) \le \ln 3$$
;

3. 
$$\ln(4x) - \ln 2 < 2\ln 4$$
.

**Exercice 20.** Résoudre les inéquations suivantes :

1. 
$$e^x > 3$$

4. 
$$2e^x - 3 > 9$$

7. 
$$\ln(-2x+1) \le 0$$

2. 
$$e^x \le \frac{1}{2}$$

5. 
$$4e^x - 1 \ge e^x + 5$$

$$8. \ln\left(\frac{3x-1}{x+2}\right) \ge 0$$

3. 
$$e^x < -e$$

6. 
$$e^{2x} - 5e^x < 0$$

9. 
$$ln(2x-1)+1>0$$

Exercice 21. Dans chacun des cas suivants, en utilisant la fonction ln, déterminer le plus petit entier naturel n tel que :

1. 
$$(0,7)^n \le 10^{-2}$$
; 2.  $(1,05)^n > 10$ ;

2. 
$$(1,05)^n > 10$$
;

3. 
$$\left(\frac{1}{3}\right)^n \le 10^{-7}$$
;

4. 
$$(0,98)^{n-1} < 0,6$$
.

Exercice 22. Un enquêteur effectue un sondage par téléphone. La probabilité que le correspondant décroche et accepte de répondre à l'enquête est de  $\frac{1}{5}$ .

Combien d'appels l'enquêteur doit-il passer au minimum, pour que la probabilité qu'au moins un correspondant réponde au sondage soit supérieure à 0,999?

## Étude de fonction

**Exercice 23.** On considère la fonction f définie sur  $]0; +\infty[$  par  $f(x) = x \ln x$ .

- 1. Étudier les limites de f en 0 et en  $+\infty$ .
- 2. Pour tout réel x > 0, calculer f'(x).
- 3. Étudier le signe de f'(x) et en déduire les variations de f.
- 4. En déduire que f admet un minimum sur  $]0;+\infty[$  que l'on précisera.

**Exercice 24.** Déterminer la dérivée de chaque fonction sur l'intervalle  $]0;+\infty[$ .

1. 
$$f(x) = 3x + 5 - \ln x$$
 2.  $f(x) = \ln x + x^4$ 

2. 
$$f(x) = \ln x + x^4$$

3. 
$$f(x) = \frac{1}{x} + 4 \ln x$$

4. 
$$f(x) = (\ln x)(x+1)$$

**Exercice 25.** Dans chacun des cas suivants, étudier le sens de variation de la fonction f sur  $]0;+\infty[$ .

$$1. \ f(x) = 5x - x \ln x$$

$$2. \ f(x) = \frac{3 - \ln x}{x}$$

3. 
$$f(x) = \frac{4}{\ln x}$$

**Exercice 26.** On considère la fonction f définie sur  $]0; +\infty[$  par  $f(x) = \frac{\ln x + 1}{x}$ .

On note  $\mathscr{C}$  sa courbe représentative dans un repère orthonormé (d'unité graphique 2 cm).

- 1. (a) Montrer que pour tout x > 0,  $f'(x) = \frac{-\ln x}{x^2}$ .
  - (b) Dresser le tableau de variation de f.
- 2. Résoudre l'équation f(x) = 0.
- 3. Déterminer une équation de la tangente T au point d'intersection de la courbe  $\mathscr C$  avec l'axe des abscisses.
- 4. Construire  $\mathscr{C}$  et T.

**Exercice 27.** On considère la fonction f définie sur  $]0; +\infty[$  par  $f(x) = (\ln x)^3 - 3\ln x$ .

On note  $\mathscr C$  sa courbe représentative dans un repère orthonormé.

- 1. Montrer que pour tout x > 0,  $f'(x) = \frac{3(\ln x 1)(\ln x + 1)}{x}$ .
- 2. Dresser le tableau des variations de f.
- 3. Résoudre l'équation f(x) = 0.
- 4. Construire  $\mathscr{C}$  et son asymptote.

# 9

## **V** Fonction ln(u)

Exercice 28. Déterminer l'ensemble de définition de chacune des fonctions suivantes.

1. 
$$f: x \mapsto \ln(5x-3)$$

3. 
$$h: x \mapsto \ln(-7x)$$

2. 
$$g: x \mapsto \ln(-8x+4)$$

4. 
$$k: x \mapsto \ln(x^2 - 2x + 1)$$

**Exercice 29.** Dans chaque cas, calculer f'(x) sur l'intervalle I.

1. 
$$f(x) = \ln(5x - 1)$$
,  $I = \left| \frac{1}{5}; +\infty \right|$ 

3. 
$$f(x) = \ln(9 - x^2)$$
,  $I = ]-3;3[$ 

2. 
$$f(x) = \ln(3x^2 - 5x + 7)$$
,  $I = \mathbb{R}$ 

4. 
$$f(x) = \ln(1 + e^x)$$
,  $I = \mathbb{R}$ 

**Exercice 30.** Soit f la fonction définie sur  $\left| \frac{1}{3}; +\infty \right|$  par :  $f(x) = \ln(3x - 1)$ .

- 1. Justifier que f est bien définie sur  $\left]\frac{1}{3};+\infty\right[$  .
- 2. Étudier les limites de f aux bornes de son ensemble de définition. Interpréter graphiquement.
- 3. Pour tout réel  $x > \frac{1}{3}$ , calculer f'(x) et étudier son signe.
- 4. Dresser le tableau de variation de la fonction f.

**Exercice 31.** Soit f la fonction définie sur ]-4; 4[ par  $[f(x) = \ln\left(\frac{x+4}{4-x}\right)$ .

On note  $\mathscr C$  la courbe représentative de f dans le plan muni d'un repère orthonormé.

- 1. Pour tout réel  $x \in ]-4$ ; 4[, comparer f(-x) et f(x). En déduire que  $\mathscr C$  possède un élément de symétrie.
- 2. Étude de f sur [0; 4[.
  - (a) Calculer f'(x) et étudier son signe sur [0; 4[.
  - (b) En déduire le sens de variation de f sur  $[0\ ;\ 4[$  .
  - (c) Déterminer une équation de la tangente à  $\mathscr C$  en 0.
  - (d) Calculer l'abscisse du point A de  $\mathscr C$  d'ordonnée 1. En donner une valeur décimale approchée à  $10^{-2}$  près.
- 3. Tracer précisément la courbe  $\mathscr C$  en utilisant les résultats obtenus précédemment.



## VI Logarithmes et suites

**Exercice 32.** En 2015, la population d'une ville compte 250 000 habitants. Chaque année, cette population diminue de 2%. À partir de quelle année la population passera-t-elle au-dessous de 100 000 habitants?

**Exercice 33** (Placement). Un capital est placé à intérêts composés au taux annuel de 3%. Au bout de combien d'années, ce capital aura-t-il plus que doublé?

**Exercice 34.** Déterminer le plus petit entier naturel n tel que  $1+5+5^2+...+5^n \ge 10^9$ .

**Exercice 35.** Soit  $(u_n)$  la suite définie par  $u_0 = 1$  et pour tout  $n \in \mathbb{N}$ ,  $u_{n+1} = \frac{1}{4}u_n + \frac{1}{2}$ .

- 1. Pour tout  $n \in \mathbb{N}$ , on pose :  $v_n = u_n \frac{2}{3}$ .
  - (a) Montrer que la suite  $(v_n)$  est une suite géométrique dont on précisera le premier terme et la raison.
  - (b) Pour tout  $n \in \mathbb{N}$ , exprimer  $v_n$  et  $u_n$  en fonction de n.
  - (c) En déduire la limite de la suite  $(u_n)$ .
- 2. Pour tout  $n \in \mathbb{N}$ , on pose :  $w_n = \ln(v_n)$ .
  - (a) Montrer que la suite  $(w_n)$  est bien définie.
  - (b) Montrer que la suite  $(w_n)$  est une suite arithmétique dont on précisera le premier terme et la raison.
  - (c) Pour tout  $n \in \mathbb{N}$ , exprimer  $w_n$  en fonction de n.