

Nom et prénom :

Exercice 1. Déterminer les limites suivantes

1.
$$\lim_{n \to +\infty} \frac{3 + \frac{1}{\sqrt{n}}}{0, 1^n}$$

$$\lim_{n \to +\infty} \sqrt{n} = +\infty \Longrightarrow \lim_{n \to +\infty} \frac{1}{\sqrt{n}} = 0 \Longrightarrow \lim_{n \to +\infty} 3 + \frac{1}{\sqrt{n}} = 3$$
Par ailleurs, puisque $0 < 0, 1 < 1$, $\lim_{n \to +\infty} 0, 1^n = 0^+$.

On en déduit que
$$\lim_{n \to +\infty} \frac{3 + \frac{1}{\sqrt{n}}}{0, 1^n} = +\infty$$

2.
$$\lim_{n \to +\infty} \frac{-2n^3 - 5n^2}{3n^3 - 5}$$

Pour tout entier
$$n \ge 1$$
, on a $\frac{-2n^3 - 5n^2}{3n^3 + 5} = \frac{n^3 \left(-2 - \frac{5}{n}\right)}{n^3 \left(3 + \frac{5}{n^3}\right)} = \frac{-2 - \frac{5}{n}}{3 + \frac{5}{n^3}}$

Comme $\lim_{n \to +\infty} \frac{5}{n} = 0$ alors $\lim_{n \to +\infty} -2 - \frac{5}{n} = -2$

Et comme $\lim_{n \to +\infty} \frac{1}{n^3} = 0$, alors $\lim_{n \to +\infty} 3 + \frac{5}{n^3} = 3$

Par quotient des limites, $\lim_{n \to +\infty} \frac{-2n^3 - 5n^2}{3n^3 - 5} = -\frac{2}{3}$

Comme
$$\lim_{n \to +\infty} \frac{5}{n} = 0$$
 alors $\lim_{n \to +\infty} -2 - \frac{5}{n} = -2$

Et comme
$$\lim_{n \to +\infty} \frac{1}{n^3} = 0$$
, alors $\lim_{n \to +\infty} 3 + \frac{5}{n^3} = 3$

Par quotient des limites,
$$\lim_{n \to +\infty} \frac{-2n^3 - 5n^2}{3n^3 - 5} = -\frac{2}{3}$$

$$3. \lim_{n \to +\infty} \frac{2 + \sin n}{n}$$

d'où
$$1 \le 2 + \sin n \le 3$$
 puis $0 \le \frac{1 + \sin n}{n} \le \frac{3}{n}$.
Comme $\lim_{n \longrightarrow +\infty} \frac{1}{n} = 0$ et $\lim_{n \longrightarrow +\infty} \frac{3}{n} = 0$,

Comme
$$\lim_{n \to +\infty} \frac{1}{n} = 0$$
 et $\lim_{n \to +\infty} \frac{3}{n} = 0$

d'après le théorème des gendarmes, on obtient que $\lim_{n \to +\infty} \frac{2 + \sin n}{n} = 0$

$$\lim_{n \to +\infty} \frac{2 + \sin n}{n} = 0$$

Exercice 2. Résoudre les équations et l'inéquation ci-dessous :

1.
$$ln(6-x) = 1$$

- Ensemble de définition :] $-\infty$; 6[car $6-x>0 \Leftrightarrow x<6$.
- Résolution : $\ln(6-x) = 1 \Leftrightarrow \ln(6-x) = \ln(e) \Leftrightarrow 6-x = e \Leftrightarrow x = 6-e$.
- Conclusion: comme x = 6 e < 6 donc $| \mathcal{S} = \{6 e\} |$

2.
$$e^{2x-5} = 3$$

- Ensemble d'existence : \mathbb{R}
- Résolution : $e^{2x-5} = 3 \iff 2x-5 = \ln 3 \iff x = \frac{\ln 3 + 5}{2}$. Conclusion : $\mathscr{G} = \left\{\frac{\ln 3 + 5}{2}\right\}$
- 3. ln(x+6) < ln(-x+5)
 - Ensemble d'existence : E =]-6;5[car $x+6>0 \Leftrightarrow x>-6$ et $-x+5>0 \Leftrightarrow x<5$.
 - Résolution: $\ln(x+6) < \ln(-x+5) \iff x+6 < -x+5$ (car ln est str. croissante sur $]0; +\infty[$)

$$\iff 2x < -1$$

$$\iff x < -\frac{1}{2}$$

• Conclusion: comme $x \in]-6;5[$ et $x < -\frac{1}{2}$ donc $\left| \mathscr{S} = \right| -6; -\frac{1}{2} \left[\right]$

$$\mathcal{S} = \left] -6; -\frac{1}{2} \right[$$

- 4. $\ln((x+3)(x-3)) = \ln(8x)$
 - Ensemble d'existence : $E = [3; +\infty[$

$$-(x+3)(x-3) > 0 \Leftrightarrow x \in]-\infty; -3[\cup]3; +\infty[.$$

$$-8x > 0 \Leftrightarrow x > 0$$

• Résolution : Supposons $x \in E$.

$$\ln((x+3)(x-3)) = \ln(8x) \iff (x+3)(x-3) = 8x \iff x^2 - 9 = 8x \iff x^2 - 8x - 9 = 0.$$

 $\Delta = 100 > 0$ et l'équation $x^2 - 8x - 9 = 0$ a deux solutions : $x_1 = -1 \not\in E$ et $x_2 = 9 \in E$.

- Conclusion : Comme E =]3; $+\infty$ [et $x_1 = -1 \not\in E$ et $x_2 = 9 \in E$ alors l'ensemble des solution est donc $\mathscr{S} = \{9\}$
- **Exercice 3.** Exprimer le nombre A sous la forme $a \ln 5$ $A = 5 \ln(5) \ln(25) + \ln\left(\frac{1}{\sqrt{5}}\right)$

$$\begin{vmatrix} A = 5\ln(5) - \ln(25) + \ln\left(\frac{1}{\sqrt{5}}\right) &= 5\ln(5) - \ln(5^2) - \ln\left(\sqrt{3}\right) &= 5\ln(5) - 2\ln(5) - \frac{1}{2}\ln(5) \\ A = \frac{5}{2}\ln(5) &= \frac{5}{2}\ln(5) \end{vmatrix}$$