CHAPITRE 11 Dénombrement

Manuel p. 334-361

I. Introduction

Commentaires pédagogiques

Au cours de ce chapitre nous allons formaliser les notions élémentaires de dénombrements selon les différents cas.

Objectifs

- → Déterminer des ensembles.
- → Déterminer une partie d'un ensemble.
- → Dénombrer des ensembles simples.
- → Utiliser le principe multiplicatif.
- → Dénombrer des combinaisons.
- → Utiliser des combinaisons.
- → Utiliser une représentation adaptée.
- → Dénombrer dans différents cas.

II. Corrigés

Pour prendre un bon départ p. 339

1. Connaître les notations mathématiques

1. a) ∉

b) ∈

d) ∉

2. al ⊂

bì ⊄

c) ∉ c) ⊂

 $\mathbf{d)}\subset$

2. Construire les ensembles ou des uplets

1. {M; A; T; H; É; I; Q; U; E; S}

2. (4, 2, 1) et (1, 4, 2).

3. Construire un tableau

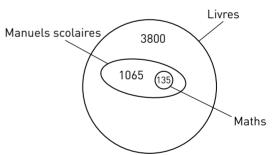
1.

	Quilles bleues	Quilles rouges	Total
Forme cylindrique	8	10	18
Forme cubique	3	4	7
Total	11	14	25

2. Il y en a 10.

4. Construire un diagramme

1.



2. Il y a 3 800 livres qui ne sont pas des manuels scolaires.

Activités p. 336-337

1 Construire des ensembles avec un ensemble

- **Durée estimée :** 15 min
- **Objectif :** Construire des ensembles à partir d'un même ensemble.
- 1. a) 3 singletons.

b) 3 paires.

c) 1 seul.

- 2. a) 4 singletons.
- **b)** 6 paires.
- c) 4 ensembles à trois éléments.
- **d)** 1 seul.
- **3. a)** *n* singletons.

b)
$$\frac{n(n-1)}{2}$$
 paires.

c)
$$\frac{n(n-)(n-2)}{6}$$
 ensembles à 3 éléments.

d) Et ainsi de suite
$$\frac{n(n-1)(n-2)...(n-p+1)}{p(p-1)(p-2)...1}$$
.

2 Construire *p*-listes (ou *p*-uplets) avec un ensemble

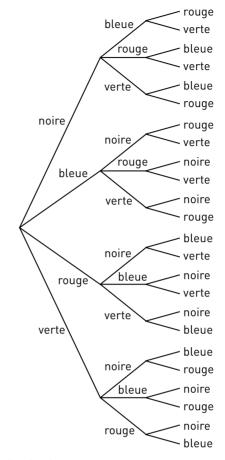
- Durée estimée : 10 min
- **Objectif :** Construire des listes à partir d'un même ensemble.
- 1. a) 3 1-uplets.
- **b)** 9 paires.
- c) 27 triplets.
- 2. a) 4 1-uplet.
- **b)** 16 paires.
- c) 64 triplets.
- d) 44 quadruplets.

3 Construire des arbres

- Durée estimée : 15 min
- Objectif : Construire des arbres pour dénombrer.

A. Sans remise

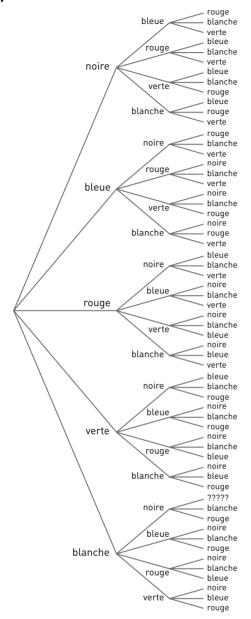
1. a)



b)
$$4 \times 3 \times 2 = 24$$

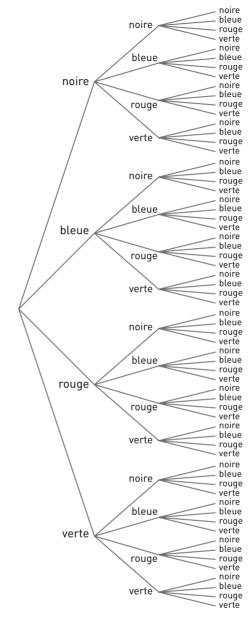
2. a)

b) $5 \times 4 \times 3 = 60$



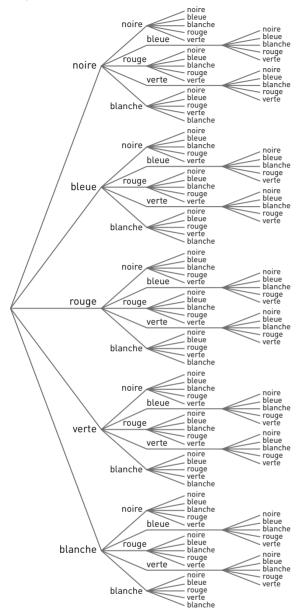
B. Avec remise

1. a)



b) $4^3 = 64$

2. a)



b) $5^3 = 125$

C. Comparaison de p-uplet et d'un sensemble

- **1.** Le nombre d'ensembles est 4, le nombre de listes sans remise est 24 et le nombre de listes avec remise est 64.
- 2. La répétition et l'ordre interviennent ou pas.
- **3.** En divisant par les ordres possibles des 3 lettres à savoir $3 \times 2 \times 1 = 6$.

À vous de jouer

o. 338

1. 1. $A \cup B = \{n : a : t : h : y : g : l : v\},$

 $A \cap B = \{n, a\} \text{ et } A \times B = \{(n, y); (n, a); (n, g); (n, l); (n, v); (n, n); (n, n)\}$

- $\left(a\;,\;y\right)\;;\left(a\;,\;a\right)\;;\left(a\;,\;g\right)\;;\left(a\;,\;l\right)\;;\left(a\;,\;v\right)\;;\left(a\;,\;n\right)\;;$
- [t, y]; [t, a]; [t, g]; [t, l]; [t, v]; [t, n];
- [h, y]; [h, a]; [h, g]; [h, l]; [h, v]; [h, n]
- **2.** (n , a , t) , (n , a , h) , (n , t , h), (n , t , a), (n , h , a), (n , h , t),

(a, n, t), (a, n, h), (a, t, h), (a, t, n), (a, h, n), (a, h, t), (t, a, n), (t, a, h), (t, n, h), (t, n, a), (t, h, a), (t, h, n), (h, n, a), (h, n, t), (h, a, t), (h, a, n), (h, t, n), (h, t, a)

- **2.** Le produit cartésien de {d ; k} et {v ; g ; i}.
- **3.** Il y en a 17.

4.

	F	G	Total
Spé	40	20	60
Non spé	70	20	90
Total	110	40	150

- **5.** Il y en a 2²⁰.
- **6.** If y en a $5 \times 4 \times 3 \times 2 \times 1 = 120$.
- **7.** Le nombre de podiums est $8 \times 7 \times 6 = 336$.
- **8.** Il y en a $4 \times 5 \times 3 = 60$.
- **9.** Le nombre de tirages est : $\begin{pmatrix} 102 \\ 7 \end{pmatrix}$.
- **10.** Il y en a $\begin{pmatrix} 52 \\ 5 \end{pmatrix}$.
- **11.** Le nombre de façons de choisir est : $\binom{10}{3} \times \binom{5}{2}$ = $120 \times 10 = 1200$

- **12. 1.** Il y a $\binom{32}{2}$ = 496 choix.
- **2.** Il y a $19 \times 13 = 247$ choix.

13.1.

	Oui	Nin	Total
Question 1	10	2	12
Question 2	3	3	6
Total	13	5	18

- 2. Il y a 13 personnes qui ont répondu oui aux deux questions.
- 14. 1. On utilise un arbre.
- **2.** Trop!
- **3.** If y en a $5 \times 4 \times 3 = 60$.

15. 1.
$$\binom{16}{4}$$
 = 1 820

2.
$$\binom{20}{4} - \binom{16}{4} = 4845 - 1820 = 3025$$

$$3. \begin{pmatrix} 20 \\ 4 \end{pmatrix} - \begin{pmatrix} 16 \\ 4 \end{pmatrix} - \begin{pmatrix} 4 \\ 1 \end{pmatrix} \times \begin{pmatrix} 16 \\ 3 \end{pmatrix}$$

$$= 3025 - 4 \times 560 = 785$$

- **16. 1.** Il y en a $\binom{20}{10}$.
- **2.** Il y en a $\binom{11}{10}$ = 11.
- **3.** Il y en a $\binom{11}{5} \times \binom{9}{5}$.
- **4.** Il y en a $11 \times \binom{9}{9} + 9 \times \binom{11}{9} = 506$.
- **17. 1.** Il y en a $\binom{13}{4} \binom{8}{4}$.
- **2.** Il y en a $\binom{8}{1}\binom{5}{3}$.

- **3.** Il y en a $\begin{pmatrix} 13 \\ 4 \end{pmatrix} \begin{pmatrix} 8 \\ 4 \end{pmatrix} \begin{pmatrix} 5 \\ 1 \end{pmatrix}$.
- **4.** Il y en a $\begin{pmatrix} 5 \\ 2 \end{pmatrix} \begin{pmatrix} 8 \\ 2 \end{pmatrix}$.
- 5. Il y en a comme la question 4.

Exercices apprendre à démontrer

p. 346

Pour s'entraîner

$$\binom{n-2}{p} + 2 \binom{n-2}{p-1} + \binom{n-2}{p-2}$$

$$= \frac{(n-2)!}{p!(n-p-2)!} + 2 \frac{(n-2)!}{(p-1)!(n-p-1)!} + \frac{(n-2)!}{(p-2)!(n-p)!}$$

$$= \frac{(n-2)!}{p!(n-p)!} ((n-p)(n-p-1) + 2p(n-p) + p(p-1))$$

$$= \frac{(n-2)!}{p!(n-p)!} (n^2 - n) = \frac{(n-2)!}{p!(n-p)!} n(n-1)$$

$$= \frac{n!}{p!(n-p)!} = \binom{n}{p}$$

Exercices

calculs et automatismes

- 18. Avec des factorielles
- **a)** 17×16
- **b)** 6 1 = 5
- **c)** 1/6
- **d)** 84
- **el** 364
- f) $13 \times 11 \times 10 \times 9$

19. Autre écriture

- **a)** $\frac{10!}{3!}$ **b)** $\frac{9!}{4! \times 3!}$ **c)** $\frac{(n+2)!}{(n-1)!}$

- **d)** $\frac{(n-2)!}{n!}$ **e)** $\frac{10!3!}{6!6!}$ **f)** $\frac{(n+1)!}{(n-3)!6!}$

20. Avec des combinaisons

- a) $\frac{6\times5}{2}$ b) $\frac{15\times14\times13\times12}{(\times2\times2)}$ c) $\frac{7\times6\times5}{2\times2}$

d)
$$\frac{\frac{7 \times 6}{2}}{\frac{9 \times 8 \times 7}{3 \times 2}} = \frac{1}{4}$$
 e) $\frac{9 \times 8}{5 \times 4} = \frac{18}{5}$ **f)** $\frac{7 \times 6 \times 5}{10 \times 9 \times 8} = \frac{7}{24}$

$$\mathbf{gl} \frac{\frac{5 \times 4}{2} \times \frac{6 \times 5}{2}}{\frac{9 \times 8 \times 7}{3 \times 2}} = \frac{25}{14}$$

$$\mathbf{h} \mathbf{J} \frac{\frac{5 \times 4}{2} \times \frac{6 \times 5 \times 4}{3 \times 2}}{\frac{7 \times 6 \times 5}{3 \times 2}} = \frac{40}{7}$$

21. Développements

- **1.** c)
- 2. b)
- **3.** c)
- **4.** b)

22. Combinaisons

- al Non.
- **bì** Oui.
- cl Oui.

- d) Non.
- e) Non.
- f) Oui.

23. Représentation graphique

- **1.** a)
- **2.** b) et c)
- **3.** c)

24. Calcul mental

- **al** 210
- **b)** 1680
- **cl** 126

- **dl** 33/2
- **el** 66
- **f)** 54

25. Lecture graphique

- 1.3 000
- **2.** 1 930
- **3.** 800

Exercices d'application

p. 348

Déterminer des ensembles

26. Il y a 20 sous-ensembles

qui sont : {a; b; c}, {a; b; d}, {a; b; e}, {a; b; f},

 ${b;c;d}, {b;c;e}, {b;c;f},$

 ${c ; d ; e}, {c ; d ; f},$

 $\{d : e : f\}$

{a; c; d}, {a; c; e}, {a; c; f}, {a; d; e}, {a; d; f},

 ${a : e : f}$.

 ${b : d : e}, {b : d : f}, {b : e : f},$

 ${c ; e ; f}.$

27. a) $M \cup S = \{m; a; g; n; r; d; s; e; t; h\}$

b) $M \cap S = \{m : a\}$

28. 1. Il y en a 45.

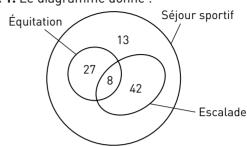
2. $C \times L = \{(0, m); (1, m); (2, m); (3, m); (4, m);$

(5, m); (6, m); (7, m); (8, m); (9, m);

(0,s); (1,s); (2,s); (3,s); (4,s); (5,s); (6, s) : (7, s) : (8, s) : (9, s)

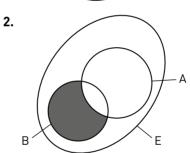
Utiliser un diagramme

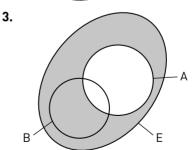
29. 1. Le diagramme donne :



- 2. 42 adolescents.
- 3. 27 adolescents.

30.1.

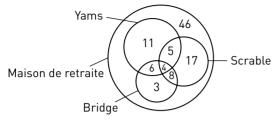




31.1.

- **2.** Il y en a 10.
- 3. Cf. réponse 1.

32. 1.



- **2.** Il y en a 46.
- **3.** Il y en a 31.
- **4.** Il y en a 19.

Tirages successifs avec remise

- **33.** $15 \times 12 = 180$
- **34.** Il y en a 4^{15} soit plus d'un milliard.
- **35.** Il y en a 10¹⁴ soit cent mille milliards.
- **36.** Il y en a $2^8 = 256$.
- **37.** Il y en a 10¹⁰.

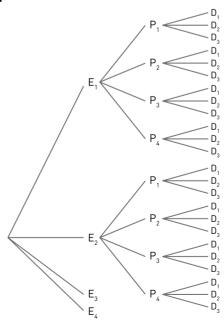
Tirages successifs sans remise

- **38.** $38 \times 37 \times 36 = 50 616$.
- **39.** If y en a $5 \times 4 \times 3 \times 2 \times 1 = 120$.
- **40.** If y en a $35 \times 34 \times 33$.
- **41.** If y en a $4 \times 3 \times 2 \times 1 = 24$.
- **42. 1.** Il y en a7! = 5 040.
- **2.** Il y en a $4! \times 3! = 144$.
- 3. Il y en a 144 également.
- **43.** Il y en a $10 \times 9 \times 6 = 540$.
- **44.** Il y a $23 \times 22 \times 21$ tiercés et $23 \times 22 \times 21 \times 20 \times 19$ quintés.
- **45. 1.** Il y a 7! anagrammes.
- **2.** If y en a $4 \times 5! \times 3$.

- **3.** If y en a $3 \times 5! \times 2$.
- **4.** It y en a $4 \times 5! \times 3$.
- **5.** Il y en a $3 \times 5! \times 4$.
- **46. 1.** Les résultats possibles sont : 900, 800, 700, 600, 500, 400, 300, 200, 100, 0.
- 2. Pour 900 il y a 6 façons, pour 800 il y a 12 façons, pour 700 il y a 30 façons, pour 600 il y a 18 façons, pour 500 il y a 21 façons, pour 400 il y a 42 façons, pour 300 il y a 42 façons, pour 200 il y a 12 façons, pour 100 il y a 6 façons, pour 0 il y a une seule facon.
- **47. 1. a)** Il y en a 6! = 720.
- **b)** Une seule.
- **2.** De $4! \times 2! = 48$ facons.
- **48. 1.** De 0 à 16 000 points.
- **2.** Il y en a beaucoup : en faire seulement quelquesuns!

Représentations

49.1.



- **2.** Le nombre de menus est de : $3 \times 4 \times 3 = 36$.
- 50.1.

	Défaut de carre	Pas de défaut de carre	Total
Défaut de fixation	10	30	40
Pas de défaut de fixation	140	820	960
Total	150	850	1 000

- **2.** Il y en a 140 + 30 = 170.
- **3.** Il y en a 10.
- **51.1.** Un arbre à 6 branches, chacune ayant 5 sousbranches, qui ont chacune encore 4 branches.
- **2.** Il y en a $6 \times 5 \times 4 = 120$.
- **3.** Il y en a $4 \times 3 \times 2 = 24$.
- 52.1.

	Crawl	Brasse	Dos	Total
Filles	50	50	60	160
Garçons	70	10	10	90
Total	120	60	70	250

2. Il y en a 50.

Tirages simultanés

- **53.** Le nombre de grilles possibles est : $\begin{pmatrix} 49 \\ 6 \end{pmatrix}$
- = 13 983 816

54. 1. Il y a
$$\binom{57}{6}$$
 façons.

2. Il y en a
$$\binom{32}{6}$$
.

3. Il y en a
$$\binom{32}{6}$$
 + $\binom{25}{6}$.

4. Il y en a
$$\binom{57}{6}$$
 - $\left(\binom{32}{6}$ + $\binom{25}{6}$ \\displies.

55. a) Le nombre de tirages est
$$\begin{pmatrix} 15 \\ 2 \end{pmatrix}$$

b) Il y en a 8×7 .

c) Il y en a
$$\begin{pmatrix} 8 \\ 2 \end{pmatrix}$$
.

56. 1. Il y en a
$$\binom{20}{6}$$
.

- **2.** Yann peut figurer dans $\binom{19}{5}$ groupes.
- **3.** On peut former $2 \times \binom{18}{5}$ groupes.
- **57.** 1. It peut former 5×4 paires.
- 2. Alors il peut former 4 paires.

58. 1. Il y en a
$$\binom{30}{4}$$
.

2. Il y en a
$$\begin{pmatrix} 18 \\ 4 \end{pmatrix}$$
.

3. Il y en a
$$\begin{pmatrix} 30 \\ 4 \end{pmatrix} - \begin{pmatrix} 18 \\ 4 \end{pmatrix}$$
.

- **59. 1.** Il y a 3³ façons.
- 2. Il y a 3³ façons.
- 3. Il y a 3^3 façons.

60. 1. Il y en a
$$\binom{39}{3} \times \binom{61}{4}$$
.

2. Il y en a
$$2 \times \binom{61}{6}$$
.

3. Il y en a
$$\binom{15}{2} \times \binom{61}{5}$$
.

4. It y en a $6 \times 8 \times 6 \times 9 \times 2 \times 15 \times 6$.

Utiliser les dénombrements

- **61. 1.** Le nombre de résultats possibles est de : 6^5 .
- **2.** Avec trois faces numérotées 1, le nombre de résultats possibles est : 6^3 .
- 3. Aucune face numérotées 1 : 5⁵.
- **4.** Au moins une $:6^5 5^5$.

- **5.** Exactement une face : 1×5^4 .
- **62. 1. a)** Il y en a $\binom{8}{3}$.
- **b)** Il y en a $\binom{3}{2} \times \binom{5}{1}$.
- **c)** Il y en a $\binom{8}{3} \binom{5}{3}$.
- **2.** Il y en a $\binom{3}{2} + \binom{2}{2} + \binom{3}{2}$.
- **63. 1.** Il y en a $\binom{9}{3}$
- 2. Il y en a autant.
- **3.** Il y en a $\binom{6}{2} \times \binom{3}{1}$.
- **64.1.a)** Il y en a 9².
- **b)** Il y en a $1 \times 9 + 9 \times 1$.
- **c)** Il y en a 3^2 .
- **2. a)** Il y en a 9×8 .
- **b)** Il y en a $1 \times 8 + 8 \times 1$.
- c) Il y en a 3×2 .
- **3. a)** Il y en a $\begin{pmatrix} 9 \\ 2 \end{pmatrix}$
- **b)** Il y en a 1×8 .
- c) Il y en a $\binom{3}{2}$.

Exercices d'entraînement

p. 352

Représentations

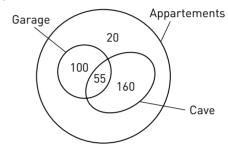
- 65. 1. Un arbre à six branches, trois fois de suite.
- 2. Il y en a 63.
- **3.** Il y en a 6.
- **4.** Il y en a $6 \times 5 \times 4$.
- **5.** Il y en a $6 \times 1 \times 5$.

66. 1.

	+	-	Total
А	381	72	453
В	62	12	74
AB	28	5	33
0	350	90	440
Total	821	179	1000

- **2.** Il y en a 28.
- 3. Il v en a 453 + 821 381 = 873.

67. 1.



- **2.** Il y en a 100.
- **3.** Il y en a 335 20 = 315.
- **68.** Il y en a 6!.
- **69. 1.** Il y en a 8⁵.
- **2.** Avec les vides cela donne $9^5 = 59049$.
- **70.** Il y en a 5!.
- **71. 1. a)** Il y en a 5³.
- **b)** Il y en a 4^3 .
- **c)** Il y en a $9^3 5^3$.
- **d)** Il y en a 5×4^2 .
- **2. a)** Il y en a $5 \times 4 \times 3$.
- **b)** Il y en a $4 \times 3 \times 2$.
- c) If y en a $9 \times 8 \times 7 5 \times 4 \times 3$.
- **d)** Il y en a $5 \times 4 \times 3$.
- **3. a)** Il y en a $\binom{5}{3}$.
- **b)** Il y en a $\begin{pmatrix} 4 \\ 3 \end{pmatrix}$.
- c) Il y en a $\binom{9}{3} \binom{5}{3}$.

d) Il y en a
$$5 \times \binom{4}{2}$$
.

72. 1. Il y en a 10 × 11.

2. Dans 4×7 cas.

3. Dans 4×11 cas.

4. Dans 10×7 cas.

5. Dans 6×4 cas.

73.1. Il y en a
$$\binom{32}{5}$$
.

2. a) Il y en a
$$\binom{4}{1}\binom{4}{1}\binom{4}{2}\binom{20}{4}$$
.

b) Il y en a
$$\begin{pmatrix} 32 \\ 5 \end{pmatrix}$$
 - 1× $\begin{pmatrix} 8 \\ 0 \end{pmatrix}\begin{pmatrix} 23 \\ 4 \end{pmatrix}$ - 1× $\begin{pmatrix} 8 \\ 1 \end{pmatrix}\begin{pmatrix} 23 \\ 3 \end{pmatrix}$.

c) Il y en a
$$1 \times \binom{7}{1} \binom{21}{3} + \binom{3}{1} \binom{7}{2} \binom{21}{2}$$
.

74. a) Il y en a
$$13 \times \binom{48}{1} = 624$$
.

b) If y en a
$$13 \times \binom{4}{2} \times \binom{12}{3} \times 4 \times 4 \times 4 = 1098240$$
.

c) Il y en a
$$\binom{13}{2} \times \binom{4}{2} \times \binom{4}{2} \times \binom{44}{1}$$

= 123552.

d) Il y en a
$$13 \times \binom{4}{3} \times 12 \times \binom{4}{2} = 3744$$
.

e) Il y en a
$$13 \times \binom{4}{3} \times \binom{48}{2} - 3744 = 54912$$
.

75. 1. Il y en a
$$\binom{13}{5}$$
.

2. Il y en a
$$\binom{13}{2} \times \binom{39}{3}$$
.

3. Il y en a
$$1 \times \begin{pmatrix} 3 \\ 1 \end{pmatrix} \times \begin{pmatrix} 12 \\ 2 \end{pmatrix} \times \begin{pmatrix} 36 \\ 1 \end{pmatrix} + \begin{pmatrix} 3 \\ 2 \end{pmatrix} \times \begin{pmatrix} 12 \\ 3 \end{pmatrix}$$
.

76. 1. Il y en a
$$\binom{8}{2} \times \binom{24}{2}$$
.

2. Il y en a $8 \times 7 \times 24 \times 23$.

3. It y en a $8^2 \times 24^2$.

Démonstrations

77.
$$n \binom{n-1}{p-1} = n \frac{(n-1)!}{(n-p)!(p-1)!} = \frac{n!p}{(n-p)!p!} = p \binom{n}{p}$$

78.
$$(n-p)\frac{n!}{(n-p)!p!} = \frac{n!(p+1)}{(n-p-1)!(p+1)!} = (p+1)\binom{n}{p+1}$$

79.
$$\frac{n(n-1)}{2} - \frac{(n-p)(n-p-1)}{2} - \frac{(n-q)(n-q-1)}{2} + \frac{(n-p-q)(n-p-q-1)}{2} = pq$$

80. 1.
$$\binom{n-2}{p} + \binom{n-2}{p-1} = \binom{n-1}{p}$$

$$\operatorname{et} \binom{n-2}{p-1} + \binom{n-2}{p-2} = \binom{n-1}{p-1}$$

donne
$$\binom{n-1}{p} + \binom{n-1}{p-1} = \binom{n}{p}$$
.

2. On peut aussi utiliser deux fois celle d'avant $\binom{n-3}{p} + 2 \binom{n-3}{p-1} + \binom{n-3}{p-2} = \binom{n-1}{p}$

et
$$\binom{n-3}{p-1}$$
 + $2\binom{n-3}{p-2}$ + $\binom{n-3}{p-3}$ = $\binom{n-1}{p-1}$ qui donne le

résultat.

Algorithmes

81. 1. Oui.

2. a) 1234, 1243, 1324, 1342, 1423, 1432, 2134, 2143, 2314, 2341, 2413, 2431, 3124, 3142, 3214,3241, 3412, 3421, 4123, 4132, 4213, 4231, 4312, 4321 **b)** 0k.

82. 1. Oui.

2. a)Ø, {1}, {2}, {3}, {4}, {1; 2}, {1; 3}, {1; 4}, {2; 3}, {2; 4}, {3; 4}, {1; 2; 3}, {1; 2; 4}, {2; 3; 4}, {1; 2; 3}, {1; 2; 4}, {2; 3; 4}, {1; 2; 3; 4}

b) 0k.

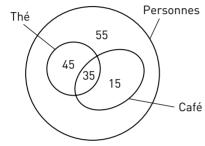
83. Travail de l'élève. Cela augmente selon le nombre de 2 et de 5 dans les décompositions en facteurs premiers des entiers consécutifs.

84. Travail de l'élève. Au cryptage de données.

Exercices bilan

p. 354

85. Sondage 1.



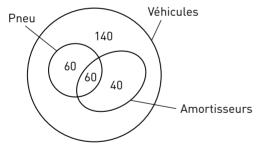
2. Il y en a 45.

3. Il y en a 15.

4. Il y en a 55.

5. Il y en a 95.

86. Prévention 1.



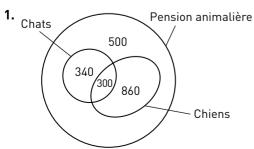
2. Il y en a 60.

3. Il y en a 40.

4. Il y en a 140.

5. Il y en a 160.

87. Des animaux



2. Il y en a 860.

3. Il y en a 340.

88. Histoire de dés

Il y en a $6 \times 4 = 24$.

89. Alphabet

1. Car il y a 24 lettres et pour les mots de deux lettres c'est $24^2 = 576$.

2. Il y en a 24 de longueur 1 et 24×23 de longueur 2.

3. Le nombre de mots possibles est 24^3 et le nombre de mots simples est $24 \times 23 \times 22$.

4. Le nombre de mots possibles est 24^5 et le nombre de mots simples est $24 \times 23 \times 22 \times 21 \times 20$.

90. Test

Il a 2⁴ façons de répondre.

91. Puissance de dix

1. Il en existe 105

2. Il y a 3, 12, 21 30, 102, 120, 111, 201, 210, 300,... soit 1 + 3 + 6 + 10 + 15 + ...

Ce qui donne donc $\frac{p(p+1)}{2}$ de plus à chaque fois

92. Nombres à 10 chiffres

1. Il y en a 10¹⁰

2. Il y en a 10!

3. Il y en a 5¹⁰

Préparer l Je me tes		p. 356
93. C	94. C	
95. B	96. A	
97. A	98. D	
99. A		

Préparer le BAC

Je révise

p. 357

100. Intersection

a) 5

101. Rangement

Le nombre de rangements est de : $4 \times 3 = 12$.

102. Encore des maths

Le nombre de mots est de : 5! = 120.

103. Au tiercé

Le nombre de tiercés est de : $20 \times 19 \times 18 = 6840$.

104. Choix

- **1.** Le nombre de choix est de : $\begin{pmatrix} 10 \\ 7 \end{pmatrix} = 120$.
- **2.** Le nombre de choix devient : $\begin{pmatrix} 3 \\ 3 \end{pmatrix} \times \begin{pmatrix} 7 \\ 4 \end{pmatrix} = 35$.
- **3.** Le nombre de choix devient : $\binom{4}{3} \times \binom{6}{4} = 4 \times 15 = 60$

105. Bridge

- **1.** Le nombre de mains est de : $\begin{pmatrix} 4 \\ 4 \end{pmatrix} \times \begin{pmatrix} 48 \\ 9 \end{pmatrix}$.
- 2. Le nombre de mains est de :

$$\binom{52}{13} - \binom{48}{9}$$

3. Le nombre de mains est de :

$$-\binom{1}{1}\binom{13}{2}\binom{38}{10}-\binom{1}{1}\binom{13}{3}\binom{38}{9}.$$

4.
$$4 \times \begin{pmatrix} 13 \\ 5 \end{pmatrix} \times 3 \times \begin{pmatrix} 13 \\ 4 \end{pmatrix} \times 2 \times \begin{pmatrix} 13 \\ 3 \end{pmatrix} \times 1 \times \begin{pmatrix} 13 \\ 1 \end{pmatrix}$$

106. Équations

a)
$$\frac{n(n+1)}{2} + \frac{(n+1)n(n-1)}{6} = \frac{5}{3}n^2 - \frac{4}{3}n$$

Soit:

$$3n(n + 1) + n(n^2 - 1) = 10n^2 - 8n$$

$$\Leftrightarrow n^3 - 7n^2 + 10n = 0$$

 $\Leftrightarrow n(n^2 - 7n + 10) = 0$ qui a pour solutions 0, 2 et 5. On retire la première qui est impossible il en reste 2.

b)
$$5n = n + \frac{n(n-1)}{2} + \frac{n(n-1)(n-2)}{6}$$

$$\Leftrightarrow 24n = 3n(n-1) + n(n-1)(n-2)$$

 $\Leftrightarrow n^2 - 25 = 0$ car n est non nul donc une seule solution n = 5.

107. Somme (1)

- **1.** On peut former $2^3 = 8$ nombres.
- 2. Leur somme est 1776.

108. Somme (2)

- **1.** On peut former $3^3 = 27$ nombres.
- 2. Leur somme est 10 989.

109. Gâteaux

Le nombre de répartitions est : $5 \times 4 \times 3 \times \begin{pmatrix} 3 \\ 2 \end{pmatrix} = 180$.

110. Jeu de dés

- **1.** Il y a 6^3 = 216 résultats.
- **2.** Il y en a $3^2 \times 3 = 27$.
- **3.** If y en a $6 \times 5 \times 4 = 120$.
- **4.** Il y en a $6 \times 1 \times 5 = 30$.

111. Second degré

- **1.** On peut en former : $9 \times 10 \times 10 = 900$.
- **2.** Pour cela il faut que c = 0 donc il y en a : $9 \times 10 \times 1 = 90$.

Exercices vers le supérieur

350

112. Digicode

- **1.** It y en a 3×9^3 .
- **2.** Il y en a 3×8^3 .
- **3.** Il y en a $3 \times 9^3 3 \times 8^3$.
- **4.** If y en a $3 \times 9 \times 8 \times 7$.
- **5.** If y en a $3 \times 9^3 3 \times 9 \times 8 \times 7$.

113. Variations autour de crayons

- **1.** Elle en a $5 \times 4 \times 3$.
- 2. Elle en a 3!.
- **3.** Il y en a $\binom{5}{3}$.

114. Au tarot

a) Il y en a
$$\begin{pmatrix} 21 \\ 5 \end{pmatrix} - \begin{pmatrix} 17 \\ 5 \end{pmatrix}$$
.

b) If y en a
$$\binom{4}{1} \times \binom{6}{1} \times \binom{10}{3} + 1 \times \binom{10}{4}$$
.

c) Il y en a
$$2 \times \begin{pmatrix} 19 \\ 4 \end{pmatrix}$$

115. En colonie

1. Il y en a
$$\binom{5}{2} \times \binom{55}{10}$$
.

2. Il y en a
$$1 \times 4 \times \begin{pmatrix} 55 \\ 10 \end{pmatrix}$$

3. Il y en a
$$2 \times 3 \times \binom{55}{10}$$
.

116. Podium

- **1.** If y en a $8 \times 7 \times 6 = 336$.
- **2.** Il y en a $3 \times 2 \times 1 = 6$.
- **3.** Il y en a 336 $5 \times 4 \times 3$.
- **4.** It y en a $3 \times 2 \times 5$.

117. Droites

Le nombre de points est $\frac{n(n-1)}{2}$.

118. Région d'un disque

1. Il y en a
$$1 + \binom{n}{2} + \binom{n}{4}$$
.

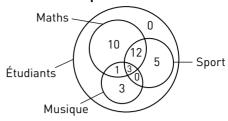
2. 1, 2, 4, 8, 16, 31, ...

119. À la poste

Le nombre de combinaisons est :

$$1 \times \begin{pmatrix} 5 \\ 2 \end{pmatrix} + 1 \times \begin{pmatrix} 4 \\ 4 \end{pmatrix} + \begin{pmatrix} 2 \\ 2 \end{pmatrix} \times \begin{pmatrix} 5 \\ 2 \end{pmatrix} + \begin{pmatrix} 2 \\ 2 \end{pmatrix} \times \begin{pmatrix} 4 \\ 4 \end{pmatrix} + \begin{pmatrix} 2 \\ 1 \end{pmatrix} \times \begin{pmatrix} 5 \\ 5 \end{pmatrix} \times \begin{pmatrix} 4 \\ 4 \end{pmatrix}$$

120. Maths et musique



Il y en a 3.

121. Sélectionneur

Il peut former $\binom{3}{1} \times \binom{17}{10}$ équipes.

122. Proverbe?

On peut en former 6!.

123. Gouvernement et sport

- **1.** On peut en composer $\begin{pmatrix} 23\\11 \end{pmatrix}$.
- **2.** On peut en composer $\frac{23!}{13!}$
- **3.** On peut en former 9×14 .

124. Second degré

a)
$$\frac{n(n-1)}{2} = 36 \Leftrightarrow n^2 - n - 72 = 0 \text{ donc } n = 9$$

b)
$$\frac{3n(n-1)(n-2)(n-3)}{24} = \frac{14n(n-1)}{2} \iff n(n-1)$$

 $(n^2 - 5n - 50) = 0 \text{ donc } n = 10.$

125. Lecture

Le nombre de facons est $16! \times 4!$.

126. Anagrammes

- a) Il y en a 5!.
- **b)** Il y en a $\frac{8!}{3}$.
- **c)** Il y en a $\frac{8!}{2 \times 2}$.

127. Au restaurant

Il y a $\binom{7}{3}$ répartitions possibles.

128. Au bridge

Elle peut terminer de $4^3 \times 4^2 \times 4 \times 4^2$ façons.

129. Dans le TGV

- **1.** Il y en a 5²³.
- **2.** Il y en a 7×4^{28} .

130. Dans une entreprise

- **1.** Il y en a $\frac{p(p-1)}{2}$
- **2.** Il y en a $\frac{q(q-1)}{2}$
- **3.** Il y en a *pq*.
- **4.** La somme de tous les saluts est la somme des trois questions précédentes d'une part et d'autre part il y a p+q employés donc $\frac{(p+q)(p+q-1)}{2}$ saluts.
- 5. On calcule:

$$\binom{p}{2} + pq + \binom{q}{2} = \frac{p(p-1)}{2} + pq + \frac{q(q-1)}{2}$$

 $= \frac{p^2 - p + 2pq + q^2 - q}{2}$ d'une part et d'autre part :

$$\binom{p+q}{2} = \frac{(p+q)(p+q-1)}{2} = \frac{p^2-p+2pq+q^2-q}{2}.$$

131. Démonstration (1)

$$\sum_{k=p}^{n} \binom{k}{p} = \sum_{k=p}^{n} \left(\binom{k+1}{p+1} - \binom{k}{p+1} \right)$$
 d'après la formule de

Pascal et par télescopage il reste $\binom{n+1}{p+1} - 0 = \binom{n+1}{p+1}$

$$\operatorname{car}\begin{pmatrix} p \\ p+1 \end{pmatrix} = 0.$$

132. Intersection et réunion

- **1.** $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$
- **2.** $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$
- 3. C'est la distributivité.

133. Démonstration (2)

1.
$$\binom{n}{p}\binom{p}{k} = \frac{n!}{(n-p)!p!} \times \frac{p!}{(p-k)!k!}$$
 et

 $\binom{n}{k}\binom{n-k}{p-k} = \frac{n!}{(n-k)!k!} \times \frac{(n-k)!}{(n-p)!(p-k)!}$ qui sont bien

2.
$$\sum_{k=0}^{p} {n \choose k} {n-k \choose p-k} = \sum_{k=0}^{p} {n \choose p} {p \choose k} = {n \choose p} \sum_{k=0}^{p} {p \choose k} = 2^{p} {n \choose p}$$

134. Démonstration (3)

1. On utilise l'égalité :

$$(1+x)^{n+p} = (1+x)^n (1+x)^p$$

qui donne à l'aide de la formule du binôme :

$$\sum_{k=0}^{n+p} \binom{n+p}{k} x^k = \left(\sum_{i=0}^{n} \binom{n}{i} x^i\right) \left(\sum_{j=0}^{p} \binom{p}{j} x^j\right) = \sum_{k=0}^{n+p} \left(\sum_{i+j=k} \binom{n}{i} \binom{p}{j}\right) x^k$$

et par identification des coefficients on a :

$$\binom{n+p}{k} = \sum_{i+j=k} \binom{n}{i} \binom{p}{j} = \sum_{i=0}^{k} \binom{n}{i} \binom{p}{k-i}.$$

2. Avec n = p dans la relation précédente ce qui donne $\binom{2n}{n}$.

Travaux pratiques

n 360-36

TP 1. Combinaisons avec répétitions

- Durée estimée : 15 min
- **Objectif :** Découvrir les combinaisons avec répétition.

A. Différences d'énoncé

1. L'ordre.

2.
$$\binom{5}{3} \times 5^2 = 250$$

B. Exemples

1.
$$\Gamma_5^3 = \begin{pmatrix} 5+3-1 \\ 3 \end{pmatrix} = \begin{pmatrix} 7 \\ 3 \end{pmatrix} = 35$$

2.
$$\Gamma_7^2 = \begin{pmatrix} 7+2-1 \\ 2 \end{pmatrix} = \begin{pmatrix} 8 \\ 2 \end{pmatrix} = 28$$

TP 2. Promenade aléatoire

• Durée estimée : 15 min

• Objectif : Découvrir un sujet de CAPES.

1. Par exemple on peut coder 0 pour un déplacement vers l'est et 1 pour un déplacement vers le nord.

Ce qui donne pour le trajet dessiné : 011110010010110

- **2.** Le nombre de trajets est de $\binom{15}{8}$ = 6 435.
- **3.** Pour cela il faut dénombrer successivement les ensembles de 8-suites comportant 7 zéros, 6 zéros, ..., 0 zéro :
- avec 7 zéros et un 8, il y en a $\binom{8}{1}$ = 8;
- avec 6 zéros et 3 + 5 ou 7 + 1 ou 4 + 4 ou 6 + 2, il y en a $\binom{8}{6}\binom{2}{1} \times 3 + \binom{8}{6} = 196$;
- avec 5 zéros et 6 + 1 + 1 ou 5 + 2 + 1 ou 4 + 2 + 2 ou 4 + 3 + 1 ou 3 + 3 + 2, il y en a $\binom{8}{5}\binom{3}{1} \times 3 + \binom{8}{5}\binom{3}{1}\binom{2}{1} \times 2 = 1176;$
- avec 4 zéros et 5 + 1 + 1 + 1 ou 4 + 2 + 1 + 1 ou 3 + 2 + 2 + 1 ou 3 + 3 + 1 + 1 ou 2 + 2 + 2 + 2, il y en $a \begin{pmatrix} 8 \\ 4 \end{pmatrix} \begin{pmatrix} 1 \\ 1 \end{pmatrix} + \begin{pmatrix} 4 \\ 1 \end{pmatrix} \begin{pmatrix} 3 \\ 1 \end{pmatrix} \times 2 + \begin{pmatrix} 4 \\ 2 \end{pmatrix} + 1 = 2450$
- avec 3 zéros et 4 + 1 + 1 + 1 + 1 ou 3 + 2 + 1 + 1 + 1 ou 2 + 2 + 2 + 1 + 1, il y en a $\binom{8}{3} \binom{5}{1} + \binom{5}{1} \binom{4}{1} + \binom{5}{3} = 1960;$

• avec 2 zéros et 3 + 1 + 1 + 1 + 1 + 1 ou 2 + 2 + 1 + 1 + 1 + 1, il y en a

$$\binom{8}{2} \binom{6}{1} + \binom{6}{2} = 588 ;$$

- avec 1 zéro et 2 + 1 + 1 + 1 + 1 + 1 + 1, il y en a $\binom{8}{1}\binom{7}{1} = 56$;
- avec aucun zéro il y en a une.

Donc au total cela donne aussi 6 435.

TP 3. Triangle de Pascal et binôme de Newton

- Durée estimée : 20 min
- **Objectif :** En découvrir plus sur le triangle de Pascal.

A. Algorithme

L'algorithme fabrique le triangle de Pascal.

B. Développements

1.
$$(a + b)^2 = a^2 + 2ab + b^2$$

 $(a + b)^3 = a^3 + 3a^2b + 3ab^2 + b^3$
 $(a + b)^4 = a^4 + 4a^3b + 6a^2b^2 + 4ab^3 + b^4$

- **2.** Les coefficients sont ceux de chaque ligne du triangle et les puissances de *a* diminuent pendant que celles de *b* augmentent tout en gardant la même somme.
- **3.** $(a + b)^5 = a^5 + 5a^4b + 10a^3b^2 + 10a^2b^3 + 5ab^4 + b^5$ $(a + b)^6 = a^6 + 6a^5b + 15a^4b^2 + 20a^3b^3 + 15a^2b^4 + 6ab^5 + b^6$