

Nom et prénom:.....

Exercice 1. On considère la suite (u_n) définie pour tout $n \in \mathbb{N}^*$ par $u_n = 2 + \frac{2}{n}$

1. Etudier les variations de la suite (u_n)

Correction

Pour
$$n \in \mathbb{N}^*$$
 $u_{n+1} - u_n = 2 + \frac{2}{n+1} - \left(2 + \frac{2}{n}\right)$

$$u_{n+1} - u_n = 2 + \frac{2}{n+1} - 2 - \frac{2}{n}$$

$$u_{n+1} - u_n = \frac{2}{n+1} - \frac{2}{n}$$

$$u_{n+1} - u_n = \frac{2n - 2(n+1)}{n(n+1)}$$

$$u_{n+1} - u_n = \frac{2n - 2n - 2}{n(n+1)}$$

$$u_{n+1} - u_n = \frac{2n - 2n - 2}{n(n+1)}$$

Comme
$$-2 < 0$$
, $n > 0$ et $n + 1 > 0$, alors $\frac{2}{n(n+1)} < 0$

D'où
$$u_{n+1} - u_n < 0$$

Donc la suite (u_n) est décroissante.

2. Montrer que pour tout entier naturel non nul n, $u_n > 2$

Correction

On sait que pour tout n appartenant à \mathbb{N} , n > 0

Alors
$$\frac{1}{n} > 0$$

D'où
$$2 + \frac{1}{n} > 2$$

Donc pour tout entier naturel n, $u_n > 2$

3. Montrer que (u_n) converge

Correction

D'après les question 1 et 2, on sait que la suite (u_n) est décroissante et minorée par 2

En utilisant le théorème de convergence, on obtient que la suite (u_n) converge.

Exercice 2. Soient $A = \{2; 5\}$ et $B = \{1; 3; 5; 7\}$. Décrire les ensembles $A \cup B$, $A \cap B$ et $A \times B$.

Correction

- $A \cup B = \{1; 2; 3; 5; 7\}$
- $A \cap B = \{5\}$
- $A \times B = \{(2;1); (2;3); (2;5); (2;7); (5;1); (5;3); (5;5); (5;7)\}$

vérification : $card(A) \times card(B) = 2 \times 4 = 8$

Exercice 3. Pour accéder à un service sur Internet, vous devez taper un mot de passe de 4 lettres choisies dans lalphabet latin majuscule (26 caract'eres) et d'un chiffre (10 caractères).

1. Combien de mots de passe peut-on créer?

Correction

Pour la première lettre : 26 choix possibles Pour la seconde lettre : 26 choix possibles Pour la troisième lettre : 26 choix possibles Pour la quatrième lettre : 26 choix possibles

Pour le chiffre : 10 choix possibles

Donc $26 \times 26 \times 26 \times 26 \times 10 = 26^4 \times 10 = 4569760$

Autre méthode :

 $card(A) = card(\{a; b; ...; z\}^4 \times \{0; 1; ...; 9\}) = card(\{a; b; ...; z\})^4 \times 10 = 26^4 \times 10 = 4569760$

On peut donc créer 4 569 760 mots de passe avec 4 lettres et un chiffre.

2. Combien de mots de passe avec 4 lettres distinctes peut-on créer?

Correction

Pour la première lettre : 26 choix possibles Pour la seconde lettre : 25 choix possibles Pour la troisième lettre : 24 choix possibles Pour la qautrième lettre : 23 choix possibles

Donc $26 \times 25 \times 24 \times 23 \times 10 = 3588000$

On peut donc créer 3 588 000 mots de passe avec 4 lettres distinctes et un chiffre.

Exercice 4. On considère la suite (u_n) définie pour tout $n \in \mathbb{N}^*$ par $u_n = 2 - \frac{2}{n}$

1. Etudier les variations de la suite (u_n)

Correction

Pour
$$n \in \mathbb{N}^*$$
 $u_{n+1} - u_n = 2 - \frac{2}{n+1} - \left(2 - \frac{2}{n}\right)$

$$u_{n+1} - u_n = 2 - \frac{2}{n+1} - 2 + \frac{2}{n}$$

$$u_{n+1} - u_n = \frac{2}{n} - \frac{2}{n+1}$$

$$u_{n+1} - u_n = \frac{2(n+1) - 2n}{n(n+1)}$$

$$u_{n+1} - u_n = \frac{2n+1-2n}{n(n+1)}$$

$$u_{n+1} - u_n = \frac{2}{n(n+1)}$$

Comme 2 > 0, n > 0 et n + 1 > 0, alors $\frac{2}{n(n+1)} > 0$

D'où $u_{n+1} - u_n > 0$

Donc la suite (u_n) est croissante.

2. Montrer que pour tout entier naturel non nul n, $u_n < 2$

Correction

On sait que pour tout n appartenant à \mathbb{N} , n > 0

Alors
$$\frac{1}{n} > 0$$
 et $-\frac{1}{n} < 0$

D'où
$$2 - \frac{1}{n} < 2$$

Donc pour tout entier naturel n, $u_n < 2$

3. Montrer que (u_n) converge

Correction

D'après les question 1 et 2, on sait que la suite (u_n) est croissante et majorée par 2

En utilisant le théorème de convergence, on obtient que la suite (u_n) converge.

Exercice 5. Soient $A = \{1; 3; 5; 7\}$ et $B = \{2; 5\}$. Décrire les ensembles $A \cup B$, $A \cap B$ et $A \times B$.

Correction

- $A \cup B = \{1; 2; 3; 5; 7\}$
- $A \cap B = \{5\}$
- $A \times B = \{(1;2); (1;5); (3;2); (3;5); (5;2); (5;5); (7;2); (7;5)\}$

vérification : $card(A) \times card(B) = 4 \times 2 = 8$

Exercice 6. Pour accéder à un service sur Internet, vous devez taper un mot de passe de 4 lettres choisies dans lalphabet latin majuscule (26 caract'eres) et de deux chiffres (10 caractères).

1. Combien de mots de passe peut-on créer?

Correction

Pour la première lettre : 26 choix possibles Pour la seconde lettre : 26 choix possibles Pour la troisième lettre : 26 choix possibles Pour la quatrième lettre : 26 choix possibles

Pour le premier chiffre : 10 choix possibles Pour le second chiffre : 10 choix possibles

Donc $26 \times 26 \times 26 \times 26 \times 10 \times 10 = 26^4 \times 100 = 45697600$

Autre méthode :

$$card(\mathbf{A}) = card(\{a;b;...;z\}^4 \times \{0;1;...;9\}^2) = card(\{a;b;...;z\})^4 \times 10 = 26^4 \times 10^2 = 45697600$$

On peut donc créer 45 697 600 mots de passe avec 4 lettres et deux chiffres.

2. Combien de mots de passe avec 4 lettres distinctes peut-on créer?

Correction

Pour la première lettre : 26 choix possibles Pour la seconde lettre : 25 choix possibles Pour la troisième lettre : 24 choix possibles Pour la qautrième lettre : 23 choix possibles Pour le premier chiffre : 10 choix possibles Pour le second chiffre : 10 choix possibles Donc $26 \times 25 \times 24 \times 23 \times 10 \times 10 = 35880000$

On peut donc créer 35 880 000 mots de passe avec 4 lettres distinctes et deux chiffres.