

Dénombrement

Activité à projeter

I Rappel sur les ensembles

Définition 1 : Ensemble

Un ensemble est une collection d'objets qui présentent une ou plusieurs propriétés communes.

Soit E un ensemble, $x \in E$ signifie « x est un élément de E » ou « x appartient à E ».

On désigne par Ø l'ensemble vide qui n'a aucun élément.

Définition 2 : Partie d'un ensemble

Soient E et A deux ensembles

A est une partie de l'ensemble E si tous les tous les éléments de A appartiennent aussi à E,

On dit que « A est sous ensemble de E » ou que « A est inclus dans E »

Notation : $A \subset E$

Exemple:

- **■** 3 ∈ Z
- $\bullet \ \mathbb{N} \subset \mathbb{Z} \subset \mathcal{D} \subset \mathbb{Q} \subset \mathbb{R}$

Définition 3 : Cardinal

Soit n un entier naturel

Lorsqu'un ensemble ${\rm E}$ a un nombre n fini d'éléménts , on dit que ${\rm E}$ est un ensemble fini.

Le nombre n d'éléments de E est appelé cardinal de E, noté card(E)

Exemple:

- $A = \{a; b; c\} \text{ alors } Card(A) = 3$
- $Card(\emptyset) = 0$
- Certains ensembles ne sont pas finis : l'ensemble N ; l'ensemble des réels de l'intervalle [0;1]

Remarques:

- 1. Une partie avec un seul élément s'appelle un singleton
- 2. Une partie avec deux éléments s'appelle une paire

Exemple:

On a $A = \{a; b; c\}$

Alors l'ensemble de toutes les parties de A, c'est-à-dire tous les sous-ensemble possibles de A sont :

 \emptyset ; $\{a\}$; $\{b\}$; $\{c\}$; $\{a;b\}$; $\{a;c\}$; $\{b;c\}$; $\{a;b;c\}$

Définition 4 : Complémentaire

Soient A et E deux ensembles tel que $A \subset E$.

Le complémentaire de A dans E, noté \overline{A} , se lit « A barre », est l'ensemble des éléments de E n'appartenant pas à A , c'est à dire : $x \in \overline{A} \Leftrightarrow x \in E$ et $x \notin A$

Définition 5 : Réunion

Soient A et B deux ensembles.

La réunion de A et B, noté $A \cup B$, est l'ensemble des éléments appartenant à A ou à B :

pour tout élément x de A ou B: $x \in A \cup B \Leftrightarrow x \in A$ ou $x \in B$

Définition 6 : Intersection

Soient A et B deux ensembles.

L'intersection de A et B, noté $A \cap B$, est l'ensemble des éléments appartenant à A et à B :

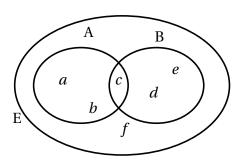
pour tout élément x de A et B : $x \in A \cap B \Leftrightarrow x \in A$ et $x \in B$

Remarque:

Si deux événements A et B n'ont aucun résultat en commun, c'est à dire A \cap B = \emptyset

Alors A et B sont dits disjoints ou incompatibles

Exemple:



D'après le diagramme de Venn, on a les résultats suivants :

- $E = \{a; b; c; d; e; f\}$ alors Card(E) = 6
- $A = \{a; b; c\}$
- $B = \{c; d; e\}$
- A \cup B = {a; b; c; d; e}
- $\bullet A \cap B = \{c\}$
- a ∈ A
- $f \in E$ et $f \notin A$
- $A \subset E$
- $\{a;c\}\subset A$

II Dénombrement

1) Principe additif

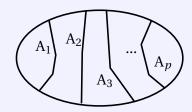
Propriété: Principe additif

Le nombre d'éléments de la réunion deux ensembles A et B disjoint, respectivement de n et p éléments, est n+p

Autrement dit $Card(A \cup B) = Card(A) + Card(B) = n + p$

Généralisation

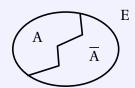
Soient A_1 , A_2 ,..., A_p p ensembles finis deux à deux disjoints Alors $Card(A_1 \cup A_2 \cup \cdots \cup A_p) = Card(A_1) + Card(A_2) + \cdots + Card(A_p)$



Corollaire

Soient A une partie d'un ensemble E fini et \overline{A} le complémentaire de A dans E

Alors $Card(\overline{A}) = Card(E) - Card(A)$



2) Principe multiplicatif

Définition et propriété : principe multiplicatif

E et F sont deux ensembles non vides

- 1. Le produit cartésien de E par F, noté $E \times F$ (se lit « E croix F ») est l'ensemble des couples (x; y) avec $x \in E$ et $y \in F$
- 2. Lorsque les ensembles E et F sont finis, $Card(E \times F) = Card(E) \times Card(F)$

Remarque : les signes × ne désigne pas le même produit

- 1. dans $Card(E \times F)$: × symbolise le produit cartésien des ensembles E et F et se lit « croix »
- 2. dans $Card(E) \times Card(F) : \times$ symbolise la multiplication de deux entiers et se lit « fois »

Exemple:

Soient
$$E = \{a ; b ; c\}$$
 et $F = \{1 ; 2\}$
Alors $E \times F = \{(a; 1); (a; 2); (b; 1); (b; 2); (c; 1); (c; 2)\}$
Et $F \times E = \{(1; a); (1; b); (1; c); (2; a); (2; b); (2; c)\}$

Généralisation

Soient p un nombre entier supérieur ou égale à 2 et E_1 , E_2 , ..., E_p p ensembles non vides

- Toute liste ordonnée $(x_1; x_2; ...; x_p)$, avec $x_i \in E_i$ pour tout i allant de 1 à p, est appelée p-uplet (ou p-listes)
- L'ensemble de ces p-uplets est le produit cartésien $E_1 \times E_2 \times \cdots \times E_p$
- Lorsque les ensembles E_1 , E_2 , ..., E_k sont finis : $Card\left(E_1 \times E_2 \times \cdots \times E_p\right) = Card\left(E_1\right) \times Card\left(E_2\right) \times \cdots \times Card\left(E_p\right)$

Remarques:

- Un k-uplet s'écrit avec des parenthèses
- Un 2-uplet s'appelle un couple
- Un 3-ulpet s'appelle un triplet
- L'ordre intervient donc $(a; b) \neq (b; a)$
- Les objets peuvent être identiques (a; a) existe (il suffit de penser aux coordonnées)

Exemple:

On considère les ensembles = $\{a\}$, $F = \{b; d\}$ et $G = \{a; b; c\}$. Déterminer $G \times A \times F$.

 $| G \times A \times F = \{ (a; a; b); (a; a; d); (b; a; b); (b; a; d); (c; a; b); (c; a; d) \}$

Cas particulier : p-uplets d'un ensemble à n éléments

Soient E un ensemble à n éléments et p un entier naturel non nul

Alors

- un *p*-uplets de E est un élément de E^{*p*}
- le nombre de p-uplets d'un ensemble E à n éléments est n^p
- $Card(E^p) = (Card(E))^p$

Exemple:

On considère l'ensemble $H = \{a; b; c; d\}$. Déterminer 2-uplets de H.

On a (a; a); (a; b); (a; c); (a; d); (b; a); (b; b); (b; c); (b; d); (c; a); (c; b); (c; c); (c; d); (d; a); (d; b); (d; c); On sait qu'on n'en a pas oublié puisque le nombre de 2-uplets d'un ensemble H à 4 éléments est $4^2 = 16$

Exercice d'application :

Un immeuble est protégé par un digicode. Ce code peut être constitué de quatre, cinq ou six chiffres allant de 0 à 9, puis d'une lettre sélectionnée parmi les lettres A, B et C. Combien de code peut-on former avec ce système?

On appelle E_1 ; E_2 et E_3 l'ensemble des mots de passe composé respectivement de 4, 5 et 6 chiffres et d'une lettre.

Alors
$$Card(E_1) = Card(\{0; 1; ...; 9\}^4 \times \{A; B; C\}) = 10^4 \times 3 = 30\ 000$$

$$Card(E_2) = Card(\{0;1;...;9\}^5 \times \{A;B;C\}) = 10^5 \times 3 = 300\ 000$$

$$Card(E_3) = Card(\{0;1;...;9\}^6 \times \{A;B;C\}) = 10^6 \times 3 = 3000000$$

Et $30\ 000 + 300\ 000 + 3\ 000\ 000 = 3\ 330\ 000$

Il y a donc 3 330 000 codes possibles

Activité 3 page 337

III Permutation

Définition 7 : Permutation

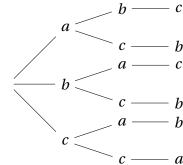
On appelle **permutation** d'un ensemble E à n éléments **tous** les ordres possibles dans les n-uplets constitués des éléments de cet ensemble E.

Remarque : une permutation de E est une **liste ordonnée** de tous les éléments de E pris **une fois et une seule**.

Exemple : On considère l'ensembles $G = \{a; b; c\}$. Déterminer l'ensemble des triplets possibles de G.

On cherche bien les 3-uplets constitués des 3 éléments de l'ensemble.

Tous les triplets possibles sont : (a;b;c); (a;c;b); (b;a;c); (b;c;a);



Attention : (a;b;a) et (a;b) ne sont pas des permutations de G car elle ne contient pas tous les éléments de G.

Propriété : Nombre de permutations d'un ensemble à n éléments (admise)

Le nombre de permutation d'un ensemble à n éléments s'écrit n!, se lit « factorielle n » et est défini par $n! = n \times (n-1) \times (n-2) \times \cdots \times 3 \times 2 \times 1$

Démonstration :

On utilise un raisonnement par cases :

$$1^{er}$$
 élément 2^{e} élément 3^{e} élément ... n^{e} élément

n possibilités \times (n-1) possibilités \times (n-2) possibilités \times \times (n-n+1) possibilités

On a n possiblités pour choisir le premier élément de la liste, puis (n-1) choix possibles pour le deuxième élément, et ainsi de suite jusqu'au dernier élément pour lequel, on n'a plus qu'une seule possibilité.

Ainsi le nombre total de permutations est bien n!

Dans l'exemple précédent :

On a
$$G = \{a; b; c\}$$

Alors le nombre de permutations avec un ensemble à 3 éléments est $3! = 3 \times 2 \times 1 = 6$

Propriété sur les factorielles

- **■** 0! = 1
- $n! = n \times (n-1)!$
- $(n+1)! = (n+1) \times n!$

Exemples:

a) Dans combien d'ordre différents peut-on écouter 12 morceaux de musique?

$$| 12 \times 11 \times \cdots \times 1 = 12 ! = 479 \ 001 \ 600$$

Il y a donc 479 001 600 ordres différents pour écouter 12 morceaux de musique

b) De combien de façons peut-on placer 6 personnes à une table de 6?

$$| 6 \times 5 \times 4 \times 3 \times 2 \times 1 = 6! = 720$$

Il y a 720 possibilités de placer les six personnes sur une tables de 6

IV Arrangements

Définition 8 : Arrangement ou p-liste

Soit E un ensemble fini non vide de cardinal n et p un entier vérifiant $1 \le p \le n$.

Un arrangement à p éléments de E est une p-liste d'éléments deux à deux distincts de E (pas de répétition d'éléments).

Remarques:

- Un arrangement correspond à un choix ordonné (comme dans une p-liste) de p éléments deux à deux distincts.
- La définition d'un arrangement **exclut la répétition** d'un même élément.
- Par conséquent, il n'existe aucun arrangement à p éléments de E, lorsque p est strictement supérieur à n, cardinal de l'ensemble E.

Exemple:

Si E = a; b; c; d alors (c; a; b) et (b; a; c) sont deux arrangements différents à trois éléments de E.

En revanche (a; c; a) n'est pas un arrangement car l'élément a est répété.

Théorème 1 : Nombre d'arrangement ou de p-uplets

Le **nombre d'arrangements** à p éléments ($1 \le p \le n$) d'un ensemble E de cardinal n noté A_n^p , se lit $(A \cap p)$, est :

- $A_n^p = n \times (n-1) \times (n-2) \times \cdots \times (n-p+1)$ avec p facteurs
- $\bullet A_n^p = \frac{n!}{(n-p)!}$

Idée de démonstration :

On utilise un raisonnement par cases :

 1^{er} élément 2^e élément 3^e élément ... p^e élément

n possibilités \times (n-1) possibilités \times (n-2) possibilités \times \dots \times (n-p+1) possibilités

On a n possiblités pour choisir le premier élément de la liste, puis (n-1) choix possibles pour le deuxième élément, et ainsi de suite jusqu'au dernier p^e élément.

Par convention: $A_n^0 = \frac{n!}{(n-0)!} = \frac{n!}{n!} = 1$

Exemples : Un drapeau est constitué de trois bandes verticales de couleurs.

a) De combien de façons peut-on peindre les trois bandes de couleurs différentes, en utilisant trois des 6 couleurs fondamentales: bleu, jaune, rouge vert, violet, orange?

On voit que nous sommes dans une situation où les éléments doivent être ordonnés et il n'y a pas de répétition d'une couleur : il faut donc faire un arrangement à 3 éléments d'un ensemble à 6 éléments ou le nombre de 3-uplets distincts d'un ensemble à 6 éléments

$$A_6^3 = \frac{6!}{(6-3)!} = \frac{6!}{3!} = \frac{6 \times 5 \times 4 \times 3 \times 2 \times 1}{3 \times 2 \times 1} = 6 \times 5 \times 4 = 120$$

On peut donc faire 120 drapeaux à trois bandes avec trois couleurs différentes parmi les 6 proposées. Il y a 120 choix ordonnés de 3 couleurs 2 à 2 distincts parmi 6 couleurs

b) Combien de drapeaux supplémentaires peut-on obtenir si on accepte que les deux bandes non adjacentes soient de la même couleur?

$$\begin{vmatrix} 6\times5\times5=150 & \text{ou} & 6\times5\times1=30 \\ 150-120=30 & \\ \text{On peut peindre 30 drapeaux supplémentaires} \end{vmatrix}$$

Calculatrices

- Numworks Touche Toolbox puis Dénombrement enfin permute(n,k)
- TI-83 Plus: [6] [math] PRB [2] (Arrangement) 3
- TI Nspire : [menu] [5] [2] (Affichage : nPr(n,x))
- Casio graph35+ : menu probabilités PROBA puis OPTN > F6 > PROB (Affichage : nPr)

V Combinaison

Définition 9 : Combinaison

Soit E un ensemble fini de cardinal n ($n \ge 1$) et k un entier tel que $(1 \le p \le n)$.

Une **combinaison** à p éléments de E est un sous ensemble de E qui possède p éléments.

Remarques:

- a) Une combinaison à p éléments de E correspond à un choix **non ordonné** de p éléments de E, **2 à 2 distincts** (pas de répétition d'éléments).
- b) Pour les combinaisons, on parle de tirage sans remise, de tirage simultané.

Exemple : Soit $E = \{ a; b; c; d \}$.

- { a;b; c } et { b;c; d } sont deux combinaisons différentes à 3 éléments de E.
- En revanche { a;b; c } et { b;a; c } sont deux combinaisons égales, à 3 éléments de E.
- Enfin { a;b; a } n'est pas une combinaison à 3 éléments puisque ce sous-ensemble s'écrit plus simplement
 { a; b }. C'est donc une combinaison à 2 éléments.

Théorème 2 : Nombre de combinaisons

Le nombre de combinaisons à p éléments $(1 \le p \le n)$ d'un ensemble E de cardinal n, noté C_n^p ou $\binom{n}{p}$, se

lit « C n p » ou « p parmi n », est :
$$C_n^p = \binom{n}{p} = \frac{A_n^p}{p!} = \frac{n!}{p!(n-p)!}$$

 $\binom{n}{p}$ s'appelle **coefficient binomial**.

Démonstration :

- A partir d'une combinaison à p éléments, on peut former par permutation de ces éléments p! arrangements
 à p éléments de E.
- Les $\binom{n}{p}$ combinaisons à p éléments de E engendrent bien $p ! \binom{n}{p}$ arrangements différents.

En effet, aucun d'eux n'est compté 2 fois, car 2 combinaisons différentes (différent par au moins un élément) ne peuvent engendrer des arrangements identiques.

Aucun arrangement à p éléments n'est ainsi oublié, puisque tout arrangement est engendré par la combinaison (sous-ensemble) constituée de ses p éléments et d'eux seuls.

- Les A_n^p arrangements à p éléments de E sont donc ainsi obtenus; il en existe p! fois plus que de combinaisons à p éléments.
- D'où $A_n^p = \binom{n}{p}p$! ce qui équivaut à $\binom{n}{p} = \frac{A_n^p}{p!} = \frac{n!}{p!(n-p)!}$

9

Exemple:

a) Dans une classe de 31 élèves (5 filles et 26 garçons), combien y a-t-il de choix possibles de deux délégués?

On voit que nous sommes dans une situation où les éléments ne doivent pas être ordonnés et il n'y a pas de répétition : il faut donc déterminer le nombre de combinaison de 2 éléments parmi 31

$$\binom{31}{2} = \frac{31!}{2!(31-2)!} = \frac{31!}{2! \times 29!} = 465$$

Il y a donc 465 choix possibles de deux délégués

b) Même question si l'on veut une fille et un garçon délégués?

Si on veut une fille: 5 choix possibles

Si on veut un garçon : 26 choix possibles

Alors cela donne 130 couples de délégués possibles car $5 \times 26 = 130$

Calculatrices

Numworks Touche Toolbox puis Dénombrement enfin binomial(n,k)

TI-83 Plus : [31] [math] PRB [3] (Combinaison) 2

■ TI Nspire : [menu] [5] [2] (Affichage : nPr(n,x))

■ Casio graph35+: menu probabilités PROBA puis OPTN > F6 > PROB (Affichage: nPr)

9

VI Coefficients binomiaux

Définition 10 : Coefficients binomiaux

Pour tout couple (n, p) d'entiers naturels tels que n > 0 et $0 \le p \le n$,

les nombres $\binom{n}{p}$ sont appelés **coefficients binomiaux**.

Propriétés des coefficients binomiaux

Pour tout couple (n, p) d'entiers naturels tels n > 0 et $0 \le p \le n$,

Démonstration :

■ De même
$$\binom{n}{n} = \frac{n!}{n!(n-n)!} = \frac{n!}{n! \times 1} = 1$$

$$\underline{\mathsf{Cas particulier}} : \begin{pmatrix} 0 \\ 0 \end{pmatrix} = 1$$

Exemple: Trouver un entier naturel k différent de 8, tel que $\binom{20}{8} = \binom{20}{k}$

D'après la propriété $\binom{n}{p} = \binom{n}{n-p}$ il faut donc que k = 20 - 8 = 12

$$\binom{n}{p} + \binom{n}{p+1} = \binom{n+1}{p+1}$$

Propriété d'addition

Pour tout couple (n, p) d'entiers naturels tels n > 1 et $0 \le p \le n$,

$$\binom{n}{p} + \binom{n}{p+1} = \binom{n+1}{p+1}$$

Démonstration 1, par dénombrement :

Parmi les n+1 objets, on considère un objet "a" en particulier :

- si cet objet "a" fait partie des p+1 objets tirés, il y a $\binom{n}{p}$ possibilités de choisir les p autres objets parmi les p objets restants.
- si en revanche, cet objet "a" ne fait pas partie du tirage, il y a $\binom{n}{p+1}$ possibilités de choisir les p+1 autres objets parmi les n objets restants.

Donc pour choisir p+1 objets parmi $n+1: \binom{n}{p} + \binom{n}{p+1} = \binom{n+1}{p+1}$

Démonstration 2, par calcul :

On peut aussi démontrer ce théorème en fonction des factorielles.

$$\binom{n}{p} + \binom{n}{p+1} = \frac{n!}{p!(n-p)!} + \frac{n!}{(p+1)!(n-(p+1))!}$$

$$= \frac{n!}{p!(n-p)!} + \frac{n!}{(p+1)!(n-p-1)!}$$

$$= \frac{n! \times (p+1)}{(p+1)!(n-p)!} + \frac{n! \times (n-p)}{(p+1)!(n-p)!}$$
 (mise au même dénominateur en prenant les « plus grands nombres »)
$$= \frac{n!}{(p+1)!(n-p)!} ((p+1) + (n-p))$$

$$= \frac{n!}{(p+1)!(n-p)!} (n+1)$$

$$= \frac{n! \times (n+1)}{(p+1)!(n-p)!}$$

$$= \frac{(n+1)!}{(p+1)!(n-p)!}$$

$$= \binom{n+1}{p+1}$$

Triangle de Pascal

On utilise la formule $\binom{n}{p} + \binom{n}{p+1} = \binom{n+1}{p+1}$ que l'on applique dans un tableau

n \p	0	1	2	 p	<i>p</i> + 1		n	n+1
0	$\begin{pmatrix} 0 \\ 0 \end{pmatrix} = 1$							
1	$\begin{pmatrix} 1 \\ 0 \end{pmatrix} = 1$	$\begin{pmatrix} 1 \\ 1 \end{pmatrix} = 1$						
2	$ \binom{2}{0} = 1 $	$\binom{2}{1} = 2$						
n	$\binom{n}{0} = 1$	$\binom{n}{1} = n$	$\binom{n}{2}$	 $\binom{n}{p}$	$\binom{n}{p+1}$:	$\binom{n}{n} = 1$	
n+1	$\binom{n+1}{0} = 1$	$\binom{n+1}{0} = n+1$	$\binom{n+1}{2}$		$\binom{n+1}{p+1}$		$\binom{n+1}{n} = n+1$	$\binom{n+1}{n+1} = 1$

C'est à dire

n \ p	0	1	2	3	4	5
0	1					
1	1	1				
2	1	2	1			
3	1	3	3	1		
4	1	4	6	4	1	
5	1	5	10	10	5	1

Remarques :

- La 1° colonne du tableau n'est remplie que de 1 car $\binom{n}{0} = 1$ ainsi que la diagonale car $\binom{n}{n} = 1$
- Sur chaque ligne, on retrouve $\binom{n}{p} = \binom{n}{n-p}$

Binôme de Newton

Rappelons les identités remarquables :

$$(a+b)^2 = a^2 + 2ab + b^2$$
 avec $n = 2$ et les coefficients 1, 2, 1
 $(a+b)^3 = a^3 + 3 a^2b + 3 a b^2 + b^3$ avec $n = 3$ et les coefficients 1, 3, 3, 1

On peut généraliser...

Binôme de Newton (admis)

$$(a+b)^n = \binom{n}{0}a^n \ b^0 + \binom{n}{1}a^{n-1} \ b^1 + \binom{n}{2} \ a^{n-2} \ b^2 + \dots + \binom{n}{k}a^{n-k} \ b^k + \dots + \binom{n}{n} \ a^0 \ b^n = \sum_{k=0}^n \binom{n}{k} \ a^{n-k} \ b^k$$

Propriété

Soit n un entier naturel, alors $2^n = \sum_{k=0}^n \binom{n}{k} = \binom{n}{0} + \binom{n}{1} + \binom{n}{2} + \cdots + \binom{n}{n}$

Démonstration 1, à l'aide du dénombrement :

Soit E un ensemble fini à n éléments.

• On cherche l'ensemble des parties de E, constitué de 0 élément, 1 éléments,, n éléments Pour cela, on pose pour tout entier naturel k inférieur au égale à n, E_k l'ensemble des parties de E composées de k éléments d'où $Card(E_k) = \binom{n}{k}$

Les \mathbf{E}_k sont deux à deux disjoints et forment l'ensemble de toutes les parties de \mathbf{E}

D'où
$$Card(E_0 \cup E_1 \cup \cdots \cup E_n) = Card(E_0) + Card(E_1) + \cdots + Card(E_n) = \binom{n}{0} + \binom{n}{1} + \cdots + \binom{n}{n}$$

Donc le nombre de parties de E ensemble à n éléments est de $\binom{n}{0} + \binom{n}{1} + \cdots + \binom{n}{n}$

■ En cherchant une autre méthode pour déterminer le nombre de parties de E à *n* éléments, on sait que pour chaque élément, on a deux choix : on le prend dans la partie ou non.

Alors E possède $2 \times 2 \times \dots \times 2$ (n facteurs) de parties

Donc E possède 2^n de parties

■ En regroupant les deux éléments, on obtient : $\binom{n}{0} + \binom{n}{1} + \binom{n}{2} + \cdots + \binom{n}{n} = \sum_{k=0}^{n} \binom{n}{k} = 2^n$

Démonstration 2, en utilisant la formule du binôme Newton :

Cas particulier si a = b = 1

$$(1+1)^{n} = \binom{n}{0} 1^{n} \ 1^{0} + \binom{n}{1} 1^{n-1} \ 1^{1} + \binom{n}{2} \ 1^{n-2} \ 1^{2} + \dots + \binom{n}{k} 1^{n-k} \ 1^{k} + \dots + \binom{n}{n} \ 1^{0} \ 1^{n}$$

$$(2)^{n} = \binom{n}{0} + \binom{n}{1} + \binom{n}{2} + \dots + \binom{n}{k} + \dots + \binom{n}{n} \qquad \text{d'où } 2^{n} = \sum_{k=0}^{n} \binom{n}{k}$$

VII Synthèse

Résumons un peu ce que l'on a vu en présentant les différentes questions que l'on doit se poser lorsque l'on est confronté à un problème de dénombrement. Cela nous permettra de savoir **choisir le concept** à utiliser en fonction de la situation.

- 1. Les répétitions sont-elles ou non autorisées?
- 2. L'ordre des éléments est-il important?
- 3. Si l'ordre importe, est-ce que tous les éléments sont utilisés?

Nous pouvons représenter par un arbre de décision ces différentes alternatives.

