

Dénombrement

I Rappel sur les ensembles

Définition 1 : Ensemble
Un ensemble est une collection d'objets qui présentent une ou plusieurs propriétés communes.
Soit E un ensemble, $x \in E$ signifie « x est un élément de E » ou « x E ».
On désigne par ∅ l'ensemble qui n'a aucun élément.
Définition 2 : Partie d'un ensemble
Soient E et A deux ensembles
m A est une $ m$ de l'ensemble $ m E$ si tous les tous les éléments de $ m A$ appartiennent aussi à $ m E$,
On dit que « $$ A est sous ensemble de $$ E $$ » ou que « $$ A est $$ $$ E $$ »
Notation : A ⊂ E
Exemple :
■ 3 Z
■ N Z D Q R
Définition 3 : Cardinal
Soit n un entier naturel
Lorsqu'un ensemble ${ m E}$ a un nombre n fini d'éléménts , on dit que ${ m E}$ est \dots
Le nombre n d'éléments de $\mathrm E$ est appelé $\dots \dots$ de $\mathrm E$, noté $\mathit{card}(\mathrm E)$
Exemple :
$\blacksquare A = \{a; b; c\} \text{ alors } Card(A) = \dots$
• $Card(\phi) = \dots$
$lacktriangle$ Certains ensembles ne sont pas finis : l'ensemble $\mathbb N$; l'ensemble des réels de l'intervalle $[0;1]$
Remarques :
1. Une partie avec un seul élément s'appelle un
2. Une partie avec deux éléments s'appelle une
Exemple :
On a $A = \{a; b; c\}$, alors l'ensemble de toutes les parties de A , c'est-à-dire tous les sous-ensemble possibles de A
sont :

Définition 4 : Complémentaire

Soient A et E deux ensembles tel que $A \subset E$.

Définition 5 : Réunion

Soient A et B deux ensembles.

La réunion de A et B, noté $A \cup B$, est l'ensemble des éléments appartenant à A ou à B:

pour tout élément x de A ou B : $x \in A \cup B \Leftrightarrow \dots$

Définition 6 : Intersection

Soient A et B deux ensembles.

L'intersection de A et B, noté $A \cap B$, est l'ensemble des éléments appartenant à A et à B :

pour tout élément x de A et B : $x \in A \cap B \Leftrightarrow \dots$

Remarque:

Si deux événements A et B n'ont aucun résultat en commun, c'est à dire $A \cap B = \emptyset$

Alors A et B sont dits ou

Exemple:

Α

В

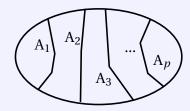
d

D'après le diagramme de Venn, on a les résultats suivants :

- A =
- B =
- $A \cap B = \dots$
- *a* A
- *f* E et *f* A
- A E
- $\{a; c\}$ A

II Dénombrement

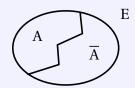
1) Principe additif


Propriété: Principe additif

Le nombre d'éléments de la réunion deux ensembles A et B disjoint, respectivement de n et p éléments, est n+p

Autrement dit $Card(A \cup B) = \dots = \dots = \dots = \dots$

Généralisation


Soient A_1 , A_2 ,..., A_p p ensembles finis deux à deux disjoints Alors $Card(A_1 \cup A_2 \cup \cdots \cup A_p) = Card(A_1) + Card(A_2) + \cdots + Card(A_p)$

Corollaire

Soient A une partie d'un ensemble E fini et \overline{A} le complémentaire de A dans E

Alors $Card(\overline{A}) = \dots$

2) Principe multiplicatif

Définition et propriété : principe multiplicatif

E et F sont deux ensembles non vides

- 1. Le produit cartésien de E par F, noté $E \times F$ (se lit « E croix F ») est l'ensemble des couples (x; y) avec $x \in E$ et $y \in F$
- 2. Lorsque les ensembles E et F sont finis, $Card(E \times F) = \dots$

Remarque : les signes × ne désigne pas le même produit

- 1. dans $Card(E \times F)$: × symbolise le produit cartésien des ensembles E et F et se lit « croix »
- 2. dans $Card(E) \times Card(F) : \times$ symbolise la multiplication de deux entiers et se lit « fois »

Exemple:

Soient $E = \{a ; b ; c\}$ et $F = \{1 ; 2\}$

Alors $E \times F = \dots$

Et $F \times E =$

Généralisation

Soient p un nombre entier supérieur ou égale à 2 et E_1 , E_2 , ..., E_p p ensembles non vides

- Toute liste ordonnée $(x_1; x_2; ...; x_p)$, avec $x_i \in E_i$ pour tout i allant de 1 à p, est appelée p-uplet (ou p-listes)
- L'ensemble de ces p-uplets est le produit cartésien $E_1 \times E_2 \times \cdots \times E_p$
- Lorsque les ensembles E_1 , E_2 , ..., E_p sont finis : $Card\left(E_1 \times E_2 \times \cdots \times E_p\right) = Card\left(E_1\right) \times Card\left(E_2\right) \times \cdots \times Card\left(E_p\right)$

_	
Remarques	
i verriai ques	

- Un p-uplet s'écrit avec des
- Un 2-uplet s'appelle un
- Un 3-ulpet s'appelle un
- L'ordre intervient donc (a; b) (b; a)
- Les objets peuvent être identiques (a; a) existe (il suffit de penser aux coordonnées)

Exemple:

On considère les ensembles = $\{a\}$, $F = \{b; d\}$ et $G = \{a; b; c\}$. Déterminer $G \times A \times F$.

Cas particulier : p-uplets d'un ensemble à n éléments

Soient E un ensemble à n éléments et p un entier naturel non nul Alors

- un p-uplets de E est un élément de E^p
- le nombre de p-uplets d'un ensemble E à n éléments est
- $Card(E^p) = \dots$

C)n	۱ (CC	or	าร	ic	lè	re	9	ľ	eı	าร	e	m	۱b	ole	е	I	I	=	= {	[0	ı;	Ł);	c	;	d	!}) (ét	t€	er	r	n	ii	n	eı	r	2	2-	·U	ıŗ	اد	le	et	S	(de	9	F	Ι.																	
																														-														-													 		 		 									
																														-																											 		 		 									
																																																-									 		 		 									

EVERCICE A SUBJECTION	•	
Exercice d'application		

Un immeuble est protégé par un digicode. Ce code peut être constitué de quatre, cinq ou six chiffres allar
de 0 à 9, puis d'une lettre sélectionnée parmi les lettres A, B et C. Combien de code peut-on former avec c
système ?

III Permutation

Définition 7 : Permutation

On appelle permutation d'un ensemble E à n éléments \dots les ordres possibles dans les n -uplets constitués des éléments de cet ensemble E .
Remarque : une permutation de E est une de tous les éléments de E pris une fois et
Exemple : On considère l'ensembles $G = \{a; b; c\}$. Déterminer l'ensemble des triplets possibles de G .
Propriété : Nombre de permutations d'un ensemble à n éléments (admise)
Le nombre de permutation d'un ensemble à n éléments s'écrit $n!$, se lit « factorielle n » et est défini par $n! = \dots $
Démonstration :
On utilise un raisonnement par cases : $1^{er} \text{ élément } 2^e \text{ élément } 3^e \text{ élément } \dots \qquad n^e \text{ élément } \dots \text{ possibilités } \times \dots possibilité$
On a possiblités pour choisir le premier élément de la liste, puis choix possibles pour le deuxième élément, et ainsi de suite jusqu'au dernier élément pour lequel, on n'a plus qu'une seule possibilité. Ainsi le nombre total de permutations est bien
Dans l'exemple précédent : On a $G = \{a; b; c\}$, Alors le nombre de permutations avec un ensemble à 3 éléments est
miors le nombre de permutations avec un ensemble à 3 éléments est

Propriété sur les factorielles

- **■** 0! = 1
- $n! = n \times (n-1)!$
- $(n+1)! = (n+1) \times n!$

Démonstrations
xemples :
Dans combien d'ordre différents peut-on écouter 12 morceaux de musique?
) De combine de Comme mont en altres (a comme de 2 de 6 de 6 de 6 de 6 de 6 de 6 de
) De combien de façons peut-on placer 6 personnes à une table de 6?

IV Arrangements

Définition 8 : Arrangement ou p-liste

Soit E un ensemble fini non vide de cardinal n et p un entier vérifiant $1 \le p \le n$.

Un arrangement à p éléments de E est une d'éléments deux à deux distincts de E (pas de répétition d'éléments).

Remarques:

- Un arrangement correspond à un choix (comme dans une p-liste) de *p* éléments deux à deux distincts.
- La définition d'un arrangement la répétition d'un même élément.
- Par conséquent, il n'existe aucun arrangement à p éléments de E, lorsque p est strictement supérieur à n, cardinal de l'ensemble E.

Exemple:

Si $E = a \; ; b \; ; c \; ; d$ alors $(c \; ; a \; ; b)$ et $(b \; ; a \; ; c)$ sont deux arrangements différents à trois éléments de E. En revanche $(a \; ; c \; ; a)$ n'est pas un arrangement car l'élément a est répété.

Théorème 1 : Nombre d'arrangement ou de p-uplets

Le **nombre d'arrangements** à p éléments ($1 \le p \le n$) d'un ensemble E de cardinal n noté A_n^p , se lit « $A \ n \ p$ », est :

- $A_n^p = n \times (n-1) \times (n-2) \times \cdots \times (n-p+1)$ avec p facteurs
- $\bullet A_n^p = \frac{n!}{(n-p)!}$

Idée de démonstration :

On utilise un raisonnement par cases :

 1^{er} élément 2^e élément 3^e élément ... p^e élément ... possibilités \times ... \times possibilités

On a n possiblités pour choisir le premier élément de la liste, puis (n-1) choix possibles pour le deuxième élément, et ainsi de suite jusqu'au dernier p^e élément.

Par convention : $A_n^0 = \dots$

a) De combien de façons peut-on peindre les trois bandes de couleurs différentes, en utilisant trois des 6 couleurs
· · · · · · · · · · · · · · · · · · ·
fondamentales : bleu, jaune, rouge vert, violet, orange?
b) Combien de drapeaux supplémentaires peut-on obtenir si on accepte que les deux bandes non adjacentes
soient de la même couleur?

Cours

<u>Calculatrices</u>

- Numworks Touche Toolbox puis Dénombrement enfin permute(n,k)
- TI-83 Plus: [6] [math] PRB [2] (Arrangement) 3
- TI Nspire : [menu] [5] [2] (Affichage : nPr(n,x))
- Casio graph35+ : menu probabilités PROBA puis OPTN > F6 > PROB (Affichage : nPr)

V Combinaison

Définition 9 : Combinaison

Soit E un ensemble fini de cardinal n ($n \ge 1$) et k un entier tel que $(1 \le p \le n)$.

Une **combinaison** à p éléments de E est un sous ensemble de E qui possède p éléments.

Remarques:

- a) Une combinaison à p éléments de E correspond à un choix de p éléments de
- E, 2 à 2 distincts (pas de répétition d'éléments).
- b) Pour les combinaisons, on parle de tirage, de tirage

Exemple : Soit $E = \{a ; b ; c ; d\}$.

- $\{a;b;c\}$ et $\{b;c;d\}$ sont deux combinaisons différentes à 3 éléments de E.
- En revanche $\{a;b;c\}$ et $\{b;a;c\}$ sont deux combinaisons égales, à 3 éléments de E.
- Enfin {a; b; a} n'est pas une combinaison à 3 éléments puisque ce sous-ensemble s'écrit plus simplement {a; b}. C'est donc une combinaison à 2 éléments.

Théorème 2 : Nombre de combinaisons

Le nombre de combinaisons à p éléments $(1 \le p \le n)$ d'un ensemble E de cardinal n, noté C_n^p ou $\binom{n}{p}$, se

lit « C n p » ou « p parmi n », est : $C_n^p = \binom{n}{p} = \dots$

 $\binom{n}{p}$ s'appelle

$\underline{\mathsf{D\'emonstration}}:$

- A partir d'une combinaison à p éléments, on peut former par permutation de ces éléments arrangements
 à p éléments de E.
- Les A_n^p arrangements à p éléments de E sont donc ainsi obtenus; il en existe fois plus que de combinaisons à éléments.
- D'où $A_n^p = \dots$ ce qui équivaut à $\binom{n}{p} = \dots$

Exemple :
a) Dans une classe de 31 élèves (5 filles et 26 garçons), combien y a-t-il de choix possibles de deux délégués?
b) Même question si l'on veut une fille et un garçon délégués?

$\underline{\mathsf{Calculatrices}}$

- Numworks Touche Toolbox puis Dénombrement enfin binomial(n,k)
- TI-83 Plus : [31] [math] PRB [3] (Combinaison) 2
- TI Nspire : [menu] [5] [2] (Affichage : nPr(n,x))
- Casio graph35+ : menu probabilités PROBA puis OPTN > F6 > PROB (Affichage : nPr)

9

VI Coefficients binomiaux

Définition 10 : Coefficients binomiaux

Pour tout couple (n, p) d'entiers naturels tels que n > 0 et $0 \le p \le n$,

les nombres $\binom{n}{p}$ sont appelés **coefficients binomiaux**.

Propriétés des coefficients binomiaux

Pour tout couple (n, p) d'entiers naturels tels n > 0 et $0 \le p \le n$,

Démonstration :

ou avec l'expression utilisant les factorielles $\binom{n}{0} = \dots$

$$\blacksquare \binom{n}{1} = \dots$$

 $\frac{\mathsf{Cas particulier}:}{0} \begin{pmatrix} 0 \\ 0 \end{pmatrix} = 1$

Exemple : Trouver un entier naturel k différent de 8, tel que $\binom{20}{8} = \binom{20}{k}$

Propriété d'addition

Pour tout couple (n, p) d'entiers naturels tels n > 1 et $0 \le p \le n$,

$$\binom{n}{p} + \binom{n}{p+1} = \dots$$

Démonstration 1, par dénombrement :

Parmi les n+1 objets, on considère un objet "a" en particulier :

- si cet objet "a" fait partie des p+1 objets tirés, il y a $\left(\begin{array}{c} \dots \\ \dots \end{array}\right)$ possibilités de choisir les \dots autres objets parmi les \dots objets restants.
- si en revanche, cet objet "a" ne fait pas partie du tirage, il y a $\left(\begin{array}{c} \dots \\ \dots \end{array}\right)$ possibilités de choisir les \dots autres objets parmi les \dots objets restants.

Donc pour choisir p+1 objets parmi $n+1: \binom{n}{p} + \binom{n}{p+1} = \dots$

Démonstration 2, par calcul :

On peut aussi démontrer ce théorème en fonction des factorielles.

| $\binom{n}{p} + \binom{n}{p+1}$ | = . |
 | |
|---------------------------------|-----|------|------|------|------|------|------|------|------|------|------|--|
| | = |
 | |
| | = |
 | |
| | = |
 | |
| | = |
 | |
| | = |
 | |
| | = |
 | |
| | = |
 | |
| | = |
 | |

Triangle de Pascal

On utilise la formule $\binom{n}{p} + \binom{n}{p+1} = \binom{n+1}{p+1}$ que l'on applique dans un tableau

		(,) (,) (,	,				
n \p	0	1	2	 p	<i>p</i> + 1	 n	n+1
0	$\begin{pmatrix} 0 \\ 0 \end{pmatrix} = 1$						
1	$\begin{pmatrix} 1 \\ 0 \end{pmatrix} = 1$	$\begin{pmatrix} 1 \\ 1 \end{pmatrix} = 1$					
2	$ \binom{2}{0} = 1 $	$\binom{2}{1} = 2$					
n	$\binom{n}{0} = 1$	$\binom{n}{1} = n$	$\binom{n}{2}$	 $\binom{n}{p}$	$\binom{n}{p+1}$	 $\binom{n}{n} = 1$	
n+1	$\binom{n+1}{0} = 1$	$\binom{n+1}{1} = n+1$	$\binom{n+1}{2}$		$\binom{n+1}{p+1}$	 $\binom{n+1}{n} = n+1$	$\binom{n+1}{n+1} = 1$

C'est à dire

n \ p	0	1	2	3	4	5
0						
1						
2						
3						
4						
5						

Remarques :

- La 1° colonne du tableau n'est remplie que de 1 car $\binom{n}{0} = 1$ ainsi que la diagonale car $\binom{n}{n} = 1$
- Sur chaque ligne, on retrouve $\binom{n}{p} = \binom{n}{n-p}$

Binôme de Newton

Rappelons les identités remarquables :

$$(a+b)^2 = a^2 + 2ab + b^2$$
 avec $n = 2$ et les coefficients 1, 2, 1
 $(a+b)^3 = a^3 + 3 a^2b + 3 a b^2 + b^3$ avec $n = 3$ et les coefficients 1, 3, 3, 1

On peut généraliser...

Binôme de Newton (admis)

$$(a+b)^n = \binom{n}{0}a^n \ b^0 + \binom{n}{1}a^{n-1} \ b^1 + \binom{n}{2}a^{n-2} \ b^2 + \dots + \binom{n}{k}a^{n-k} \ b^k + \dots + \binom{n}{n}a^0 \ b^n = \sum_{k=0}^n \binom{n}{k}a^{n-k} \ b^k$$

Propriété

Soit *n* un entier naturel, alors $2^n = \sum_{k=0}^{n} \binom{n}{k} = \binom{n}{0} +$

$$2^{n} = \sum_{k=0}^{n} \binom{n}{k} = \binom{n}{0} + \binom{n}{1} + \binom{n}{2} + \cdots + \binom{n}{n}$$

Démonstration 1, à l'aide du dénombrement :

Soit E un ensemble fini à n éléments.

• On cherche l'ensemble des parties de E, constitué de 0 élément, 1 éléments,, n éléments Pour cela, on pose pour tout entier naturel k inférieur au égale à n, E_k l'ensemble des parties de E composées de k éléments d'où $Card(E_k) = \begin{pmatrix} \cdots \\ \end{pmatrix}$

Les E_k sont deux à deux disjoints et forment l'ensemble de toutes les parties de E

D'où $Card(E_0 \cup E_1 \cup \cdots \cup E_n) = Card(E_0) + Card(E_1) + \cdots + Card(E_n) = \cdots$

Donc le nombre de parties de E ensemble à n éléments est de \dots

• En cherchant une autre méthode pour déterminer le nombre de parties de E à n éléments, on sait que pour chaque élément, on a deux choix : on le prend dans la partie ou non.

Alors E possède $\dots (n \text{ facteurs})$ de parties

Donc E possède de parties

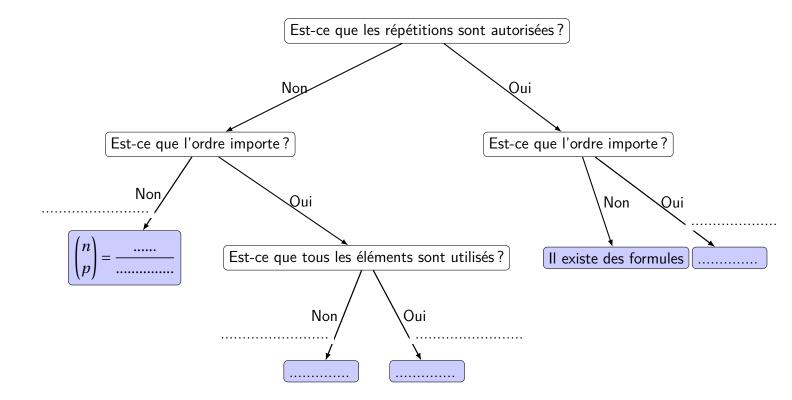
■ En regroupant les deux éléments, on obtient : $\binom{n}{0} + \binom{n}{1} + \binom{n}{2} + \cdots + \binom{n}{n} = \sum_{k=0}^{n} \binom{n}{k} = \cdots$

Démonstration 2, en utilisant la formule du binôme Newton :

Cas particulier si a = b = 1

$$(1+1)^n = \left(\begin{array}{c} \cdots \\ \cdots \end{array} \right) 1^{-n} 1^{-n} + \left(\begin{array}{c} \cdots \\ \cdots \end{array} \right) 1^{-n} 1^{-n} + \left(\begin{array}{c} \cdots \\ \cdots \end{array} \right) 1^{-n} 1^{-n} + \dots + \left(\begin{array}{c} \cdots \\ \cdots \end{array} \right) 1^{-n} 1^{-n} + \dots + \left(\begin{array}{c} \cdots \\ \cdots \end{array} \right) 1^{-n} 1^{-n} + \dots + \left(\begin{array}{c} \cdots \\ \cdots \end{array} \right) 1^{-n} 1^{-n} + \dots + \left(\begin{array}{c} \cdots \\ \cdots \end{array} \right) 1^{-n} 1^{-n} + \dots + \left(\begin{array}{c} \cdots \\ \cdots \end{array} \right) 1^{-n} 1^{-n} + \dots + \left(\begin{array}{c} \cdots \\ \cdots \end{array} \right) 1^{-n} 1^{-n} + \dots + \left(\begin{array}{c} \cdots \\ \cdots \end{array} \right) 1^{-n} 1^{-n} + \dots + \left(\begin{array}{c} \cdots \\ \cdots \end{array} \right) 1^{-n} 1^{-n} + \dots + \left(\begin{array}{c} \cdots \\ \cdots \end{array} \right) 1^{-n} 1^{-n} + \dots + \left(\begin{array}{c} \cdots \\ \cdots \end{array} \right) 1^{-n} 1^{-n} + \dots + \left(\begin{array}{c} \cdots \\ \cdots \end{array} \right) 1^{-n} 1^{-n} + \dots + \left(\begin{array}{c} \cdots \\ \cdots \end{array} \right) 1^{-n} 1^{-n} + \dots + \left(\begin{array}{c} \cdots \\ \cdots \end{array} \right) 1^{-n} 1^{-n} 1^{-n} + \dots + \left(\begin{array}{c} \cdots \\ \cdots \end{array} \right) 1^{-n} 1^{-n} 1^{-n} + \dots + \left(\begin{array}{c} \cdots \\ \cdots \end{array} \right) 1^{-n} 1^{-n} 1^{-n} + \dots + \left(\begin{array}{c} \cdots \\ \cdots \end{array} \right) 1^{-n} 1^{-n} 1^{-n} + \dots + \left(\begin{array}{c} \cdots \\ \cdots \end{array} \right) 1^{-n} 1^{-n} 1^{-n} 1^{-n} + \dots + \left(\begin{array}{c} \cdots \\ \cdots \end{array} \right) 1^{-n} 1^{$$

D'où $2^n =$


VII Synthèse

Résumons un peu ce que l'on a vu en présentant les différentes questions que l'on doit se poser lorsque l'on est confronté à un problème de dénombrement. Cela nous permettra de savoir **choisir le concept** à utiliser en fonction de la situation.

- 1. Les répétitions sont-elles ou non autorisées?
- 2. L'ordre des éléments est-il important?
- 3. Si l'ordre importe, est-ce que tous les éléments sont utilisés?

Nous pouvons représenter par un arbre de décision ces différentes alternatives.

Ensemble à n éléments fini et p un entier tels que n > 0 et $0 \le p \le n$,

