

CHAP 3 - DENOMBREMENT (SERIE 4)

112. Digicode

1. Il y en a 3×9^3 .

- **2.** Il y en a 3×8^3 .
- **3.** Il y en a $3 \times 9^3 3 \times 8^3$.

- **4.** If y en a $3 \times 9 \times 8 \times 7$.
- **5.** Il y en a $3 \times 9^3 3 \times 9 \times 8 \times 7$.

113. Variations autour de crayons

1. Elle en a $5 \times 4 \times 3$.

2. Elle en a 3!.

3. Il y en a $\binom{5}{3}$

114. Au tarot

a) Il y en a $\binom{21}{5} - \binom{17}{5}$

Réfléchir tous sauf aucun multiple de 5

multiple de 5 : 5 , 10 , 15 et 20 soit 4 multiples de 5 donc 17 atouts non multiples de 5 et de3

b) Il y en a $\binom{1}{1} \times \binom{10}{4} + \binom{3}{1} \times \binom{6}{1} \times \binom{10}{3}$

Réfléchir tous sauf aucun multiple de 5

multiple de 5 : 5 , 10 , 15 et 20 soit 4 multiples de 5 multiple de 3 : 3 , 6 , 9 , 12 , 15 , 18 , 21

Donc • soit on tire le 15 dans ce cas 4 choix parmi les 10 non multiples de 5 et 3

soit on ne tire pas le 15, alors il reste à choisir un multiple de
5 (différent de 15), un multiple de 3 (différents de 3) et trois autres atouts

c) Il y en a
$$\binom{1}{1} \times \binom{19}{4} + \binom{1}{1} \times \binom{19}{4} = 2 \times \binom{19}{4}$$

Réfléchir :

- soit on tire le 1 dans ce cas 4 choix parmi les 19 atouts (sauf 21)
- soit on tire le 21 dans ce cas 4 choix parmi les 19 atouts (sauf 1)

115. En colonie

1. Il y en a $\binom{5}{2} \times \binom{55}{10}$.

Réfléchir: 2 moniteurs parmi les 5 et 10 jeunes parmi les 5

- **2.** If y en a $\binom{1}{1} \times \binom{5}{1} \times \binom{55}{10} = 1 \times 4 \times \binom{55}{10}$.
- **3.** Il y en a $\binom{2}{1} \times \binom{3}{1} \times \binom{55}{10}$.

Réfléchir : faire de deux groupes de moniteurs : un groupe avec deux et un groupe de 3

116. Podium

- **1.** Il y en a $8 \times 7 \times 6 = 336$.
- **3.** Il y en a $336 5 \times 4 \times 3$.

- **2.** Il y en a $3 \times 2 \times 1 = 6$.
- **4.** If y en a $3 \times 2 \times 5 + 3 \times 5 \times 2 + 5 \times 3 \times 2 = 90$

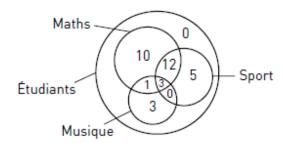
117. Droites

Le nombre de points est
$$\frac{n(n-1)}{2}$$
.

Réflexion:

On applique le principe du dénombrement aux deux expériences ce qui donne $n \times (n-1)$

Ensuite il s'agit de diviser ce résultat par deux car l'ordre dans lequel apparaissent les cartes ne nous intéresse pas, on obtient $\frac{n \times (n-1)}{2}$


119. À la poste

On peut faire les choix suivants : 1*2€ et 2*0,2€ ou 1*2€ et 4*0,1€ ou 2*1€ et 2*0,2€

ou 2*1€ et 4*0,1€ ou 2*1€ et 5*0,2€ et 4*0,1€

Le nombre de combinaisons est : $\binom{1}{1} \times \binom{5}{2} + \binom{1}{1} \times \binom{4}{4} + \binom{2}{2} \times \binom{5}{2} + \binom{2}{2} \times \binom{4}{4} + \binom{2}{1} \times \binom{5}{5} \times \binom{4}{4}$

120. Maths et musique

Il y en a 3.

121. Sélectionneur

Il peut former
$$\binom{3}{1} \times \binom{17}{10}$$
 équipes.

122. Proverbe?

- On peut en former 6!.
- 123. Gouvernement et sport
 - 1. On peut en composer $\begin{pmatrix} 23 \\ 11 \end{pmatrix}$

 $\frac{23!}{2. \text{ On peut en composer } 13!}.$

- **3.** On peut en former 9×14 .
- Réflexion : 9 femmes donc 14 hommes double mixte F et H

124. Second degré

a)
$$\frac{n(n-1)}{2} = 36 \iff n^2 - n - 72 = 0 \text{ donc } n = 9$$

$$\frac{3n(n-1)(n-2)(n-3)}{24} = \frac{14n(n-1)}{2} \Leftrightarrow n(n-1)(n^2 - 5n - 50) = 0 \text{ donc } n = 10.$$

125. Lecture

Le nombre de façons est $16! \times 4!$.

Réflexion : 4 livres avec un A donc 16 sans A

126. Anagrammes

a) Il y en a
$$\frac{5!}{2}$$
.

b) Il y en a
$$\frac{8!}{3}$$
.

c) Il y en a
$$\frac{8!}{2 \times 2}$$

127. Au restaurant

Il y a $\binom{7}{3}$ répartitions possibles.

128. Au bridge

Elle peut terminer de $4^3 \times 4^2 \times 4 \times 4^2$ façons.

Réflexion: pique (3 cartes), cœur (2 cartes), carreau (1 carte), trèfle (2 cartes)

129. Dans le TGV

1. Il y en a 5^{23} .

Réflexion : chaque voyageur pout prendre une des cinq voitures

2. Il y en a 7×4^{28} .

130. Dans une entreprise

1. Il y en a
$$\frac{p(p-1)}{2}$$
.

Réflexion: histoire des poignées de mains...

(pas ordre donc on divise par 2)

2. Il y en a
$$\frac{q(q-1)}{2}$$
.

- **3.** Il y en a *pq*.
- **4.** La somme de tous les saluts est la somme des trois questions précédentes d'une part et d'autre part il y a p+q

employés donc

- 5. On calcule:

d'une part :
$$\binom{p}{2} + pq + \binom{q}{2} = \frac{p(p-1)}{2} + pq + \frac{q(q-1)}{2} = \frac{p^2 - p + 2pq + q^2 - q}{2}$$

d'autre part :
$$\binom{p+q}{2} = \frac{(p+q)(p+q-1)}{2} = \frac{p^2 - p + 2pq + q^2 - q}{2}$$
.