

CHAP 3 - DENOMBREMENT (SERIE 2)

34. If y en a 4^{15} soit plus d'un milliard. Réfléchir par question combien de choix $4 \times 4 \times ... \times 4 = 4^{15}$ (15 fois)

35. If y en a 10^{14} soit cent mille milliards. Réfléchir par bande combien de choix $10 \times 10 \times ... \times 10 = 10^{14}$

36. If y en a $2^8 = 256$. Réfléchir par bits combien de choix $2 \times 2 \times ... \times 2 = 2^8$

37. If y en a 10^{10} . Réfléchir par chiffre du numéro combien de choix $10 \times 10 \times ... \times 10 =$

 10^{10}

38. $38 \times 37 \times 36 = 50616$. Réfléchir 1^{er} place : 38 choix, 2^e place : 37 choix...

39. If y en a $5 \times 4 \times 3 \times 2 \times 1 = 120$. Réfléchir 1er place : 5 choix, 2e place : 4 choix...

40. If y en a 35 × 34 × 33. Réfléchir Président : 35 choix, Secrétaire : 34 choix...

41. If y en a $4 \times 3 \times 2 \times 1 = 24$. Réfléchir 1^{er} lettre : 4 choix, 2^e lettre : 3 choix...

42. 1. II y en a7 ! = 5 040. Réfléchir 1er place : 7 choix, 2e place : 6 choix...

2. Il y en a 4! x 3! = 144. Réfléchir 1er place garçon : 4 choix, 2e place garçon : 3 choix...

3. Il y en a 144 également. Réfléchir GFGFGF: 1er place garçon: 4 choix, 2e place fille: 3

choix...

43. If y en a $10 \times 9 \times 3 = 270$. Réfléchir 1er place & 2e place identique : 10 choix, 3e place : 9 choix

 1^{er} place & 3^e place identique : 10 choix, 2^e place : 9 choix 2^e place & 3^e place identique : 10 choix, 1^{er} place : 9 choix

44. Il y a 23 x 22 x 21 tiercés et 23 x 22 x 21 x 20 x 19 quintés. Réfléchir 1^{er} place : 23 choix, 2^e place : 22 choix...

45. 1. Il y a 7! anagrammes. Réfléchir 1er lettre : 7 choix, 2e lettre : 6 choix...

2. If y en a 4 × 5! × 3. Réfléchir 1er lettre : 4 choix, dernière lettre : 3 cho

2. Il y en a 4 x 5! x 3.
3. Il y en a 3 x 5! x 2.
Réfléchir 1^{er} lettre : 4 choix, dernière lettre : 3 choix, il reste 5 lettres...
Réfléchir 1^{er} lettre : 3 choix, dernière lettre : 2 choix, il reste 5 lettres...

4. If y en a 4 x 5! x 3. Réfléchir 1er lettre : 4 choix, dernière lettre : 3 choix, il reste 5 lettres...

5. Il y en a 3 x 5 ! x 4. Réfléchir 1er lettre : 3 choix, dernière lettre : 2 choix, il reste 5 lettres...

47. 1. a) II y en a 6 ! = 720.

b) Une seule.

2. De 4! x 2! = 48 façons.

CHAP 3 - DENOMBREMENT (SERIE 2 - PROBLEMES)

65. 1. Un arbre à six branches, trois fois de suite.

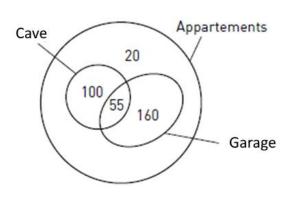
2. Il y en a 63.

3. Il y en a 6.

4. If y en a $6 \times 5 \times 4 = A_3^6$. Sans remise et avec ordre

5. If y en a $6 \times 5 \times 1 + 6 \times 1 \times 5 + 5 \times 6 \times 1$.

66. 1.


	+	-	Total
A	381	72	453
В	62	12	74
AB	28	5	33
O	350	90	440
Total	821	179	1 000

2. Il y en a 28.

3. If y en a 453 + 821 - 381 = 873.

67.

1.

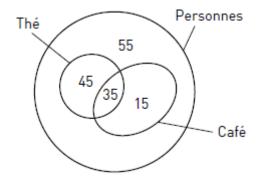
2. Il y en a 100.

3. If y en a 335 - 20 = 315.

69. 1. II y en a 8⁵.

2. Avec les vides cela donne $9^5 = 59 049$.

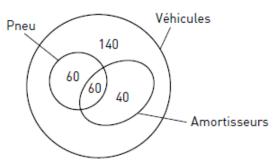
70. Il y en a 5 !.


71. 1. Avec remise et avec ordre

- a) II y en a 53.
- **b)** Il y en a 43.
- c) II y en a $9^3 5^3$.
- d) Il y en a $3 \times 5 \times 4^2$.

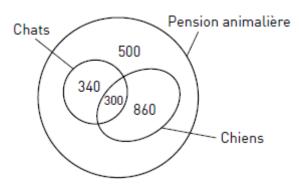
Réflexion : on ne connait pas la place du jeton vert : 1e, 2nd ou 3e

- 2. Sans remise et avec ordre
- a) II y en a 5 × 4 × 3 = A_3^5 .
- **b)** If y en a 4 × 3 × 2 = A_3^4 ...
- c) If y en a $9 \times 8 \times 7 5 \times 4 \times 3 = A_3^9 A_3^5$.
- **d)** If y en a 5 × 4 × 3 = $A_1^5 \times A_2^4$.
- 3. Sans remise et sans ordre
- **72.** 1. Il y en a 10 × 11.
- 2. Dans 4×7 cas.
- 3. Dans 4 × 4 cas.
- 4. Dans 6x 7 cas.
- 5. Dans 6 x 4 cas.
- <mark>85</mark>. Sondage


1.

- 2. Il y en a 45.
- 3. Il y en a 15.
- 4. Il y en a 55.
- 5. Il y en a 95.

86. Prévention


1.

- 2. Il y en a 60.
- 3. Il y en a 40.
- 4. Il y en a 140.
- 5. Il y en a 160.

87. Des animaux

1.

- 2. Il y en a 860.
- 3. Il y en a 340.

1.

88. Histoire de dés

II y en a $6 \times 4 = 24$.

89. Alphabet

- 1. avec remise et avec ordre Car il y a 24 lettres et pour les mots de deux lettres c'est $24^2 = 576$.
- 2. sans remise et avec ordre II y en a 24 de longueur 1 et $24 \times 23 = A_2^{24}$ de longueur 2.
- 3. Le nombre de mots possibles est 24^3 et le nombre de mots simples est $24 \times 23 \times 22 = A_3^{24}$.
- 4. Le nombre de mots possibles est 24^5 et le nombre de mots simples est $24 \times 23 \times 22 \times 21 \times 20 = A_5^{24}$.

90. Test

Il a 2⁴ façons de répondre.

91. Puissance de dix

- 1. Il en existe 10⁵
- **2.** Il y a 3, 12, 21 30, 102, 120, 111, 201, 210, 300,... soit 1 + 3 + 6 + 10 + 15 +...

$$p(p + 1)$$

Ce qui donne donc 2 de plus à chaque fois

92. Nombres à 10 chiffres

Rappel: le premier nombre à 10 chiffres est 1 000 000 000

et le dernier nombre à 10 chiffres est 9 999 999 999

C'est-à-dire le chiffre des milliards est entre 1 en 9, soit 9 possibilité

- 1. If y en a 9×10^9 avec remise et avec ordre
- 2. If y en a $9 \times 9! = 9 \times A_9^9$. sans remise et avec ordre
- 3. If y en a $4 \times 5^9 + 5 \times 5^9 = 9 \times 5^9$ Réflexion:
 - soit le 1^{er} nombre est pair alors $4 \times 5 \times 5 \times 5 \times \dots \times 5 = 4 \times 5^9$
 - soit le 1^{er} nombre est impair alors 5×5^9