

Dénombrement

I Notions abordées

- Principe additif : nombre d'éléments d'une réunion d'ensembles deux à deux disjoints.
- Principe multiplicatif: nombre d'éléments d'un produit cartésien. Nombre de k-uplets (ou k-listes) d'un ensemble à k éléments.
- Nombre des parties d'un ensemble à k éléments.
 Lien avec les k-uplets de {0,1}, les mots de longueur k sur un alphabet à deux éléments, les chemins dans

un arbre, les issues dans une succession de k épreuves de Bernoulli.

- Nombre des k-uplets d'éléments distincts d'un ensemble à k éléments. Définition de k!. Nombre de permutations d'un ensemble fini à k éléments.
- Combinaisons de k éléments d'un ensemble à k éléments : parties à k éléments de l'ensemble.
 Représentation en termes de mots ou de chemins.
- Pour $0 \le k \le n$, formules : $\binom{n}{k} = \frac{(n-1)\cdots(n-k+1)}{k!} = \frac{n! \ (n-k)!}{k!}$ Explicitation pour k=0,1,2; Symétrie; Relation et triangle de Pascal

Démonstrations à savoir :

- Démonstration par dénombrement de la relation : $\sum_{k=0}^{n} \binom{n}{k} = 2^n$
- Démonstrations de la relation de Pascal (par le calcul, par une méthode combinatoire)

Exemples d'algorithme :

- Pour un entier n donné, génération de la liste des coefficients $\binom{n}{k}$ à l'aide de la relation de Pascal.
- Génération des permutations d'un ensemble fini, ou tirage aléatoire d'une permutation.
- Génération des parties à 2, 3 éléments d'un ensemble fini.

II Méthodes à travailler

- Méthode 1, page 339 : Déterminer des ensembles
- Méthode 2, page 339 : Utiliser un diagramme pour déterminer une partie d'un ensemble
- Méthode 3, page 341 : Dénombrer des ensembles simples
- Méthode 4, page 341 : Utiliser le principe multiplicatif
- Méthode 5, page 343 : Dénombrer des combinaisons

Méthode 6, page 343 : Utiliser des combinaisons

Méthode 7, page 344 : Utiliser une représentation adaptée

Méthode 8, page 345 : Dénombrer dans différents cas

III Parcours d'exercices et de problèmes - page 335 à 361

<u>Série 1 – Mise en route</u>	
Déterminer des ensembles	27 ; 28
Utiliser un diagramme	30; 31; 32
Représentations	50
Série 2 – Dénombrement	
Tirages avec remise	34; 35; 36; 37
Tirages successifs sans remise	39; 40; 41; 42; 44; 45
Représentations	65; 66; 67; 69
Problèmes	72; 86; 87; 88; 89; 92
Algorithmes	81; 82 Utilisation des listes
Série 3 – Combinaison	
Mise en route	20; 22
Exercices d'applications	54; 55; 56; 57; 58; 60
Problèmes divers	62; 63; 64; 69; 70; 71; 73; 75; 76
Série 4 – Problèmes et approfondissement	
Problème	112; 113; 114; 115; 116; 117; 119; 120;
	121; 123; 124; 125; 128; 129; 130
<u>Série 5 – Coefficients binomiaux</u>	
Mise en route	20
Démonstrations	77; 78; 79; 80; 131; 133; 134

IV Pistes pour le Grand Oral

- Les problèmes de tirages
- Etude de situations modélisées par des combinaisons avec répétitions
- Autour de la formule du binôme
- Dénombrement et jeux contemporains
- Preuve irréfutable à l'aide de la molécule d'ADN