

Méthode : suites arithmético-géométriques

Définition : Soient a et b deux réels. Une suite arithmético-géométrique associée à a et b est une suite réelle (un) qui vérifie pour tout entier naturel n la relation de récurrence $u_{n+1} = au_n + b$

Pour trouver l'expression de u_n en fonction de n, on peut utiliser le principe de récurrence ou une suite auxillaire.

Exercice d'application

Soient (u_n) est une suite définie par son premier terme $u_0=4$ et par la relation de récurrence $u_{n+1}=3u_n6$ Et la suite auxiliaire (v_n) par : $v_n=u_n-3$

- 1. Démontrer que (v_n) est une suite géométrique dont on précisera le premier terme et la raison.
- 2. Exprimer v_n puis u_n en fonction de n.
- 3. Etudier la convergence de (u_n) .

Correction

On sait que (u_n) est une suite définie par $u_0 = 4$ et $u_{n+1} = 3u_n 6$ et que $v_n = u_n - 3$ pour tout entier naturel n.

1. Démontrer que (v_n) est une suite géométrique

Pour démontrer la suite (v_n) est bien une suite géométrique, il faut prouver après quelques lignes de calcul que $v_{n+1} = . = . = v_n \times q$

Méthode 1 dite par \acute{n} substitutions \dot{z} :

On a
$$v_{n+1} = u_{n+1} - 3$$
 car $v_n = u_n 3$
 $= 3u_n - 6 - 3$ car $u_{n+1} = 3u_n 6$
 $= 3u_n - 9$
 $= 3(v_n + 3) - 9$ car $u_n = v_n + 3$ puisque $v_n = u_n 3$
 $= 3v_n + 9 - 9$
 $= 3v_n$

Méthode 2 dite par \acute{n} factorisation \dot{z} :

On a
$$v_{n+1}=u_{n+1}-3$$
 car $v_n=u_n3$

$$=3u_n-6-3$$
 car $u_{n+1}=3u_n6$

$$=3u_n-9$$

$$=3(u_n-3)$$
 car on factorise par 3

$$=3v_n$$
 car $v_n=u_n3$

On en déduit dans chacun des cas que $v_{n+1} = 3v_n$ alors (v_n) est bien une suite géométrique.

Pour le calcul de v_0 on utilise la relation :

$$v_0 = u_0 3$$

$$v_0 = 4 - 3$$

$$v_0 = 1$$

Donc (v_n) est une suite géométrique de raison q=3 et de premier terme $v_0=1$

2. Exprimer v_n puis u_n en fonction de n

On sait que (v_n) est une suite géométrique de raison q=3 et de premier terme $v_0=1$

Alors pour tout entier naturel n, $v_n = v_0 \times q^n$ c'est à dire $V_n = 1 \times 3^n = 3^n$ pour $n \in \mathbb{N}$

Comme
$$v_n = u_n 3$$
 alors $u_n = v_n + 3$

Donc
$$Un = 3^n + 3 \text{ pour } n \in \mathbb{N}$$

3. Etudier la convergence de (u_n)

On utilise pour cela une propriété :

- Si q > 1 alors (q^n) diverge vers $+\infty$.
- Si -1 < q < 1 alors (q^n) converge vers 0.

On sait que $Un = 3^n + 3$ pour $n \in \mathbb{N}$

Or
$$\lim_{n\to+\infty} 3^n = +\infty$$

Alors
$$\lim_{n \to +\infty} 3^n + 3 = +\infty$$

$$\mathsf{Donc}\left[\lim_{n\to+\infty}u_n=+\infty\right]$$