

Méthode : Utiliser le théorème de convergence

Théorème : De convergence des suites monotones

- Une suite croissante et majorée converge.
- Une suite décroissante et minorée converge.
- Une suite croissante (respectivement décroissante) non majorée (respectivement non minorée) diverge vers $+\infty$ (respectivement $-\infty$).

Exercice d'application

Soit la suite (u_n) définie par $u_0 = 4$ et $u_{n+1} = \sqrt{u_n}$ pour tout $n \in \mathbb{N}$.

Montrer que $1 \le u_{n+1} \le u_n$ pour tout $n \in \mathbb{N}$ et en déduire que (u_n) est convergente.

Correction

On veut montrer que $1 \le u_{n+1} \le u_n$ pour tout $n \in \mathbb{N}$.

- Considérons la propriété : P_n : " $1 \le u_{n+1} \le u_n$ " pour $n \in \mathbb{N}$
- Initialisation :

Pour n = 0, on a $u_0 = 4$ et $u_1 = 2$ donc $1 \le u_1 \le u_0$ la propriété est vraie au rang 0.

Hérédité :

On va montrer que si la propriété est vraie à un certain rang $k \ge 0$ alors elle est vraie au rang k+1.

Supposons donc que $1 \le u_{k+1} \le u_k$.

Comme la fonction racine carrée est croissante sur \mathbb{R}^+ , on en déduit :

$$\sqrt{1} \le \sqrt{u_{k+1}} \le \sqrt{u_k}$$

c'est-à-dire $1 \le u_{k+2} \le u_{k+1}$

Donc la propriété est vraie au rang k+1.

Conclusion :

La propriété est vraie pour n = 0 et est héréditaire,

D'après le principe de recurrence, la propriété P_n est toujours vraie pour tout entier naturel nn

Donc
$$1 \le u_{n+1} \le u_n$$
 pour tout $n \in \mathbb{N}$

On sait que $u_{n+1} \le u_n$ pour tout $n \in \mathbb{N}$, alors on déduit que (u_n) est décroissante

et que $1 \le u_n$ pour tout $n \in \mathbb{N}$, on déduit que la suite (u_n) est minorée :

D'où la suite (u_n) est décroissante et minorée.

d'après le théorème de convergence, | la suite (u_n) est convergente |