

Méthode : Montrer qu'une suite est minorée, majorée, bornée

Pour déterminer ou justifier l'existence de minorants ou de majorants d'une suite, plusieurs méthodes peuvent être utilisées parmi lesquelles :

- l'utilisation de majorations, de minorations ou d'encadrements évidents;
- l'utilisation des variations de f dans le cas $u_n = f(n)$;
- l'étude du signe de la différence entre les termes de la suite et le majorant ou le minorant éventuel ;
- l'utilisation d'une démonstration par récurrence.

Exercice d'application

- 1. Donner un minorant de la suite (u_n) définie pour tout entier $n \ge 0$ par $u_n = 5 + 2n \left(\frac{1}{3}\right)^n$.
- 2. Donner un majorant de la suite (s_n) définie pour tout entier $n \ge 0$ par $s_n = -2n^2 + 8n + 3$.
- 3. Montrer que la suite (v_n) définie par $v_n = \frac{6n+2}{2n+1}$ pour tout $n \in \mathbb{N}$ est majorée par 3.
- 4. Soit (r_n) la suite définie par $r_0=6$ et $r_{n+1}=\sqrt{r_n+4}$ pour tout entier naturel n. Montrer par récurrence que $2 \le r_n \le 6$ pour tout entier $n \ge 0$. Que peut-on en déduire?

Correction

- 1. Comme $n \ge 0$ on en déduit que, pour tout entier naturel n, on a $2n\left(\frac{1}{3}\right)^n \ge 0$ puis que $5+2n\left(\frac{1}{3}\right)^n \ge 5$ c'est-à-dire que $u_n \ge 5$ pour tout entier naturel n Donc la suite (u_n) est donc bien minorée par 5
- 2. On a $s_n = f(n)$ avec f la fonction définie sur \mathbb{R} par $f(x) = -2x^2 + 8x + 3$. Comme -2 < 0, f atteint son maximum en $\frac{-b}{2a} = \frac{-8}{2 \times (-2)} = 2$, qui est alors f(2) = 11. Comme la suite (s_n) définie, pour tout $n \in \mathbb{N}$, par $s_n = f(n)$

On en déduit que la suite (s_n) est majorée par 11

3. On a $v_n = \frac{6n+2}{2n+1}$, on va donc étudier le signe de la différence entre v_n et 3 pour $n \ge 0$: $v_n - 3 = \frac{6n+2}{2n+1} - 3 = \frac{6n+2}{2n+1} - \frac{3(2n+1)}{2n+1} = \frac{6n+2-6n-3}{2n+1} = \frac{-1}{2n+1}.$

Or comme $n \ge 0$, on en déduit que 2n+1>0 et donc que $\frac{-1}{2n+1}<0$.

Donc pour tout $n \in \mathbb{N}$, $\nu_n - 3 < 0$, c'est-à-dire $\nu_n < 3$

Donc la suite (v_n) est majorée par 3

4. On veut montrer que $2 \le r_n \le 6$ pour tout $n \ge 0$.

• On considère la propriété : P_n : $2 \le r_n \le 6$ pour $n \in \mathbb{N}$.

Initialisation :

Pour
$$n = 0$$
, on a $r_0 = 6$ donc $2 \le r_0 \le 6$

Donc la propriété est vraie pour n = 0.

Hérédité :

On va montrer que si la propriété est vraie à un certain rang $k \ge 0$ alors elle est vraie au rang k+1.

Supposons donc que $2 \le r_k \le 6$ (hypothèse de récurrence), on a alors :

$$6 \leq r_k + 4 \leq 10$$

$$\sqrt{6} \le \sqrt{r_k + 4} \le \sqrt{10}$$
 car la fonction racine carrée est croissante sur $[0; +\infty[$

$$2 \leq \sqrt{r_k + 4} \leq 6 \qquad \operatorname{car} 2 \leq \sqrt{6} \operatorname{et} \sqrt{10} \leq 6$$

$$2 \leq r_{k+1} \leq 6.$$

On a donc bien $2 \le r_{k+1} \le 6$ c'est-à-dire que la propriété est vraie au rang k+1.

Conclusion :

La propriété est vraie pour n=0 et est héréditaire; donc par récurrence elle est vraie pour tout $n \ge 0$ c'est-à-dire $2 \le r_n \le 6$ pour tout $n \ge 0$.

On vient de montrer que la suite (r_n) est bornée par 2 et 6