

Méthode : Étudier le sens de variation d'une suite par récurrence

• On peut montrer qu'une suite est croissante en montrant par récurrence que

$$u_{n+1} \ge u_n$$
 pour tout n .

• On peut montrer qu'une suite est décroissante en montrant par récurrence que

$$u_{n+1} \le u_n$$
 pour tout n .

Toutes les méthodes vues en Première ne permettaient pas de prouver le sens de variation de certaines suites. Cette méthode vient donc en complément de celles-ci.

Exercice d'application

Soit (u_n) la suite définie par $u_0 = 5$ et $u_{n+1} = \frac{1}{5}u_n + 3$ pour tout entier naturel n. Montrer que la suite (u_n) est décroissante.

Correction

On veut montrer que $u_{n+1} \le u_n$ pour tout $n \ge 0$.

- On considère la propriété : $P_n : "u_{n+1} \le u_n"$ pour $n \in \mathbb{N}$.
- Initialisation :

Pour
$$n = 0$$
, on a $u_0 = 5$ et $u_1 = \frac{1}{5}u_0 + 3 = 4$.

On a donc bien $u_1 \le u_0$: la propriété est vraie pour n = 0.

Hérédité :

On va montrer que si la propriété est vraie à un certain rang $k \ge 0$ alors elle est vraie au rang k+1.

Supposons que $u_{k+1} \le u_k$ (hypothèse de récurrence), on a alors :

$$\frac{1}{5}u_{k+1} \le \frac{1}{5}u_k \quad \text{car on multiplie par } \frac{1}{5}$$

$$\frac{1}{5}u_{k+1} + 3 \le \frac{1}{5}u_k + 3 \quad \text{car on ajoute } 3$$

$$u_{k+2} \le u_{k+1}$$

On a donc bien $u_{k+2} \le u_{k+1}$ c'est-à-dire que la propriété est vraie au rang k+1.

Conclusion :

La propriété est vraie pour n=0 et est héréditaire; donc par récurrence elle est vraie pour tout $n \ge 0$ c'est-à-dire que $u_{n+1} \le u_n$ pour tout $n \in \mathbb{N}$

On vient de montrer que la suite (u_n) est décroissante.