

Méthode : Démontrer par récurrence une propriété

La **démonstration par récurrence**est un type de démonstration utilisé pour démontrer qu'une propriété est vraie pour des entiers positifs à partir d'un rang donné n_0 . Pour démontrer par récurrence qu'une propriété est vraie pour tout entier positif n_0 , on procède par étapes :

- On énonce la propriété à démontrer.
- **Initialisation** : on vérifie que la propriété est vraie pour n_0 .
- Hérédité : on vérifie que si l'on suppose que la propriété est vraie à un rang k ≥ n₀ (c'est ce que l'on appelle l'hypothèse de récurrence) alors la propriété est vraie au rang k+1 (le rang suivant k).
- Conclusion : la propriété est vraie pour n_0 et elle est héréditaire ; donc par récurrence elle est vraie pour tout $n \ge n_0$.

Exercice d'application

Soit (v_n) la suite définie par $v_0 = 4$ et $v_{n+1} = 2v_n - 7$ pour tout entier naturel n.

Démontrer par récurrence que $v_n = 7 - 3 \times 2^n$ pour tout $n \ge 0$.

Correction

On veut montrer que $v_n = 7 - 3 \times 2^n$ pour tout $n \ge 0$.

- On considère la propriété On considère la propriété : $P_n : "v_n = 7 3 \times 2^n "$ pour $n \in \mathbb{N}$.
- Initialisation: pour n=0, on a $v_0=4$ et $7-3\times 2^0=4$. On a donc bien $v_0=7-3\times 2^0$, la propriété est vraie pour n=0.
- <u>Hérédité</u> : on va montrer que si la propriété est vraie à un certain rang $k \ge 0$ alors elle est vraie au rang $k \ge 1$.

Supposons donc que $v_k = 7-3 \times 2^k$ (on suppose la propriété vraie pour k : c'est l'hypothèse de récurrence), on a alors :

$$2v_n=2(7-3\times 2^k)$$
 (par l'hypothèse de récurrence)
$$2v_n-7=2(7-3\times 2^k)-7$$

$$2v_k-7=14-3\times 2^{k+1}-7$$

$$v_{k+1}=7-3\times 2^{k+1}$$

On a donc bien $v_{k+1} = 7 - 3 \times 2^{k+1}$, c'est-à-dire que la propriété est vraie au rang k+1.

■ <u>Conclusion</u>: la propriété est vraie pour n = 0 et est héréditaire; donc par récurrence elle est vraie pour tout $n \ge 0$ c'est-à-dire que $v_n = 7 - 3 \times 2^n$ pour tout $n \ge 0$