Terminale : Spé Math

Exercice 1. 4 points

- 1. (u_n) est la suite géométrique telle que $u_0 = -6$ et de raison 3. Calculer u_4 .
- 2. Soit (u_n) la suite arithmétique telque $u_5 = 14$ et $u_{25} = 26$. Déterminer la raison de la suite (u_n) .
- 3. (u_n) est la suite arithmétique de premier terme $u_0=5$ et de raison r=3. Calculer $S=u_2+u_3+\cdots+u_{27}$.

Correction

1. On sait que (u_n) est la suite géométrique telle que $u_0 = -5$ et de raison 3

Alors
$$u_n = u_0 \times q^n$$
.

On doit calculer
$$u_4 = u_0 \times q^4 = -6 \times 3^4 = -6 \times 3^2 \times 3^2 = -6 \times 9 \times 9 = -6 \times 81 = -486$$

Donc
$$u_4 = -486$$

2. On sait que (u_n) la suite arithmétique telque $u_5 = 14$ et $u_25 = 26$

Alors
$$u_n = u_p + (n - p) \times r$$

D'où
$$u_{25} = u_5 + (25 - 5) \times r \iff 26 = 14 + 20r \iff \frac{26 - 14}{20} = r \iff r = \frac{12}{20} = \frac{3}{5}$$

Donc la raison est égale à
$$\frac{3}{5}$$

3. On sait que (u_n) est la suite arithmétique de premier terme $u_0 = 5$ et de raison r = 3.

On doit calculer
$$S = u_2 + u_3 + \cdots + u_{27}$$
.

Pour rappel, somme d'une suite arithmétique : $S = (nombre de termes) \times \frac{1er terme+dernier}{2}$

Alors

- le nombre de termes dans cette somme S est 27-2+1=26
- $u_2 = u_0 + 3r = 5 + 3 \times 2 = 5 + 6 = 11$

•
$$u_{27} = u_0 + 27r = 5 + 3 \times 27 = 5 + 81 = 86$$

D'où :
$$S = 26 \times \frac{11 + 86}{2} = \frac{13 \times 97}{2} = 13 \times 97 = 10 \times 97 + 3 \times 97 = 970 + 291 = 1261$$

Donc
$$S = 1261$$

Exercice 2. 8 points

On considère la suite (u_n) définie par $u_0=1$ et pour tout entier naturel $n:u_{n+1}=\frac{u_n}{u_n+1}$ Les deux parties sont indépendantes et montrerons le même resultat.

Partie A : Raisonnement par récurrence

- 1. Calculer les valeurs de u_1 , u_2 , u_3 et u_4 .
- 2. Conjecturer l'expression de u_n
- 3. Démontrer, par récurrence, la conjecture faite à la question précédente.

Partie B: Utilisation d'une suite annexe

Pour tout entier naturel n, on pose $v_n = \frac{1}{u_n}$.

- 1. Montrer que la suite (v_n) est une suite arithmétique dont on déterminera le premier terme et de raison 1.
- 2. En déduire l'expression de v_n puis celle de u_n en fonction de n.

Correction

Partie A : Raisonnement par récurrence

1. On a
$$u_0 = 1$$

Puis
$$u_1 = \frac{u_0}{u_0 + 1} = \frac{1}{2}$$

$$u_2 = \frac{u_1}{u_1 + 1} = \frac{1/2}{3/2} = \frac{1}{3}$$

$$u_3 = \frac{u_2}{u_2 + 1} = \frac{1/3}{4/3} = \frac{1}{4}$$

$$u_4 = \frac{u_3}{u_3 + 1} = \frac{1/4}{5/4} = \frac{1}{5}$$

- 2. Les résultats précédents laissent présager que pour tout entier naturel $n: u_n = \frac{1}{n+1}$.
- 3. On définit la propriété suivante : pour tout entier naturel n, P_n : $u_n = \frac{1}{n+1}$

<u>Initialisation</u>: pour n=0, on a $u_0=1$ et $\frac{1}{0+1}=1$

D'où on obtient bien $u_0 = \frac{1}{0+1}$

Donc la propriété P₀ est vraie

<u>Hérédité</u>: soit un entier naturel k, on suppose que la propriété P_k est vraie (càd $u_k = \frac{1}{k+1}$) et montrons que la propriété P_{k+1} est également vraie (càd $u_{k+1} = \frac{1}{k+1+1}$)

On sait que
$$u_k = \frac{1}{k+1}$$
 et $u_{k+1} = \frac{u_k}{u_k+1}$

$$u_{k+1} = \frac{u_k}{u_k + 1} = \frac{\frac{1}{k+1}}{\frac{1}{k+1} + 1} = \frac{\frac{1}{k+1}}{\frac{1+k+1}{k+1}} = \frac{1}{k+1} \times \frac{k+1}{k+2} = \frac{1}{k+2}$$
Hence la propriété Pure est également virsie

Donc la propriété P_{k+1} est également vraie

Conclusion : La propriété étant initialisée au rang 0 et héréditaire, d'après le principe de récurrence, pour tout entier naturel n, $u_n = \frac{1}{n+1}$

Partie B: Utilisation d'une suite annexe Pour tout entier naturel n, on pose $v_n = \frac{1}{u_n}$.

1. On doit montrer que la suite (v_n) est arithmétique, montrons que $v_{n+1} - v_n$ est constant.

D'après l'énoncé, pour tout entier naturel n:

$$v_{n+1} - v_n = \frac{1}{u_{n+1}} - \frac{1}{u_n}$$

$$= \frac{1}{u_n/(u_n+1)} - \frac{1}{u_n}$$

$$= \frac{u_n+1}{u_n} - \frac{1}{u_n}$$

$$= \frac{u_n}{u_n} = 1$$

Et son premier terme est $v_0 = \frac{1}{u_0} = 1$

Donc \lceil la suite (v_n) est donc une suite arithmétique de raison r=1 et de premier terme $v_0=1$

2. Comme la suite (v_n) est donc une suite arithmétique de raison r=1 et de premier terme $v_0=1$

Alors pour tout entier naturel $n: v_n = v_0 + nr = 1 + n$

De plus $v_n = \frac{1}{u_n} \iff u_n = \frac{1}{v_n}$

Par conséquent, pour tout entier naturel $n: u_n = \frac{1}{n+1}$

Exercice 3. 8 points

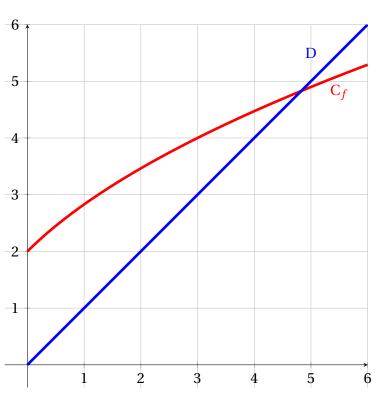
Soit
$$(u_n)$$
 la suite définie par
$$\begin{cases} u_0 = 1 \\ u_{n+1} = 2\sqrt{u_n + 1} \end{cases}$$

Partie A

Sans les calculer, représenter ci-dessous les quatre premiers termes de cette suite sachant qu'on a déjà tracé la droite D d'équation y=x et la courbe C_f représentant la fonction $f:x \longmapsto 2\sqrt{x+1}$.

Conjecturer le sens de variation de cette suite.

.....



Partie B

1. Démontrer par récurrence que pour tout entier naturel n, $0 \le u_n < u_{n+1} \le 5$.

(Pour info : $1,4 < \sqrt{2} < 1,5$ et $2,44 < \sqrt{6} < 2,45$)

- 2. En déduire le sens de variation de la suite (u_n) .
- 3. La suite (u_n) est-elle convergente?

Correction

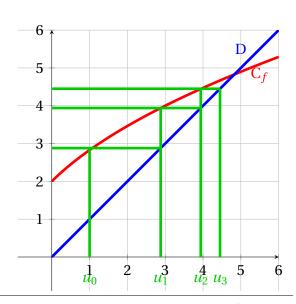
On a la suite (u_n) définie par $u_0 = 1$ et $u_{n+1} = 2\sqrt{u_n + 1}$.

Partie A

Sans les calculer, représenter ci-dessous les quatre premiers termes de cette suite sachant qu'on a déjà tracé la droite D d'équation y=x et la courbe C_f représentant la fonction $f:x \longmapsto 2\sqrt{x+1}$.

Conjecturer le sens de variation de cette suite.

La suite semble croissante



Partie B

Terminale : Spé Math

1. On définit la propriété suivante : pour tout entier naturel n, \mathscr{P}_n : $0 \le u_n < u_{n+1} \le 5$

Initialisation: pour
$$n = 0$$
, on a $u_0 = 1$ et $u_1 = 2\sqrt{u_0 + 1} = 2\sqrt{2} < 5$

D'où on obtient bien $0 < u_0 < u_1 \le 5$

Donc la propriété Po est vraie

<u>Hérédité</u> : soit un entier naturel k, on suppose que la propriété P_k est vraie (càd $0 \le u_k < u_{k+1} \le 5$) et montrons que la propriété P_{k+1} est également vraie (càd $0 \le u_{k+1} < u_{k+2} \le 5$)

On sait que $0 \le u_k < u_{k+1} \le 5$

$$1 \le u_k + 1 < u_{k+1} + 1 \le 6$$
 puisque on ajoute 1

$$\sqrt{1} \leq \sqrt{u_k+1} < \sqrt{u_{k+1}+1} \leq \sqrt{6}$$
 puisque la fonction racine carrée est strictement croissante sur $[0;+\infty[$

$$2 \le 2\sqrt{u_k + 1} < 2\sqrt{u_{k+1} + 1} \le 2\sqrt{6}$$
 puisque on multiplie par 5

or
$$2\sqrt{6} < 2 \times 2, 45 = 4, 9 < 5$$

$$0 < 2 \le 2\sqrt{u_k + 1} < 2\sqrt{u_{k+1} + 1} \le 2\sqrt{6} < 5$$

Donc la propriété P_{k+1} est également vraie

<u>Conclusion</u>: La propriété étant initialisée au rang 0 et héréditaire, d'après le principe de récurrence, pour tout entier naturel n, $0 \le u_n < u_{n+1} \le 5$

2. Comme on vient de prouver que pour tout entier naturel n, $0 \le u_n < u_{n+1} \le 5$

On peut donc en déduire que la suite (u_n) est croissante

3. On sait que la suite suite (u_n) est croissante et majrée par 5 puisque pour tout entier naturel n,

$$0 \le u_n < u_{n+1} \le 5$$

d'après le théorème de convergence, on peut dire que | la suite (u_n) est convergente