

Nom et prénom :

Exercice 1.

1. On considère la suite arithmétique (u_n) de raison 2 et de premier terme $u_1 = 0,01$.

Calculer
$$u_{20}$$
 et $S_{20} = u_1 + u_2 + \cdots + u_{20}$.

2. On considère la suite géométrique (v_n) de raison 3 et de premier terme $v_0 = 2$.

Calculer
$$v_{10}$$
 et $S_{10} = v_0 + v_1 + \cdots + v_{10}$.

Correction

1. On sait que la suite (u_n) est arithmétique de raison 2 et de premier terme $u_1 = 0,01$.

Alors pour
$$n \ge 1$$
 $u_{n+1} = u_n + 2$

pour
$$n \ge 1$$
 $u_n = u_1 + 2(n-1) = 0.01 + 2(n-1)$

Alors
$$u_{20} = 0.01 + 2 \times (20 - 1) = 0.01 + 2 \times 19 = 38.01$$

Et
$$S_{20} = u_1 + u_2 + \dots + u_{20} = (nombre\ de\ terme) \times \frac{1er\ terme + dernier}{2}$$

$$S_{20} = 20 \times \frac{0,01 + 38,01}{2} = 380,2$$

Donc
$$u_{20} = 38,01 \text{ et } S_{20} = 380,2$$

2. On sait que la suite (v_n) est géométrique de raison 3 et de premier terme $v_0=2$.

Alors pour
$$n \ge 0$$
 $v_{n+1} = v_n \times 3$

pour
$$n \ge 0$$
 $v_n = v_0 \times 3^n = 2 \times 3^n$

Alors
$$v_{10} = 2 \times 3^{10} = 118098$$

Et
$$S_{10} = v_0 + v_1 + \dots + v_{10} = 1er \ terme \times \frac{1 - raison^{nb \ determe}}{1 - raison} = 2 \times \frac{1 - 3^{10+1}}{1 - 3} = 3^{11} - 1 = 177 \ 146$$

Donc
$$v_{10} = 118098$$
 et $S_{10} = 177146$

Exercice 2.

On considère la suite (u_n) définie sur \mathbb{N} par $u_0 = 0$ et $u_{n+1} = \sqrt{1 + u_n^2}$.

- 1. Calculer les 5 premiers termes de la suite et conjecturer l'expression de u_n en fonction de n.
- 2. Démontrer cette conjecture par récurrence.

Correction

1. On a $u_0 = 0$

Alors
$$u_1 = \sqrt{1 + u_0^2} = \sqrt{1 + 0^2} = 1$$

 $u_2 = \sqrt{1 + u_1^2} = \sqrt{1 + 1} = \sqrt{2}$
 $u_3 = \sqrt{1 + u_2^2} = \sqrt{1 + (\sqrt{2})^2} = \sqrt{1 + 2} = \sqrt{3}$
 $u_4 = \sqrt{1 + u_3^2} = \sqrt{1 + (\sqrt{3})^2} = \sqrt{1 + 3} = \sqrt{4}$

On peut émettre la conjecture pour tout entier naturel n, $u_n = \sqrt{n}$

2. On définit la propriété suivante : pour tout entier naturel n, P_n : $u_n = \sqrt{n}$

<u>Initialisation</u>: pour n = 0, on a $u_0 = 0 = \sqrt{0}$ donc la propriété P_0 est vraie

<u>Hérédité</u>: soit un entier naturel k, on suppose que la propriété P_k est vraie (càd $u_k = \sqrt{k}$) et montrons que la propriété P_{k+1} est également vraie (càd $u_{k+1} = \sqrt{k+1}$)

On sait que
$$u_{k+1} = \sqrt{1 + u_k^2}$$

Or
$$u_k = \sqrt{k}$$

Alors
$$u_{k+1} = \sqrt{1 + (\sqrt{k})^2} = \sqrt{1 + k}$$

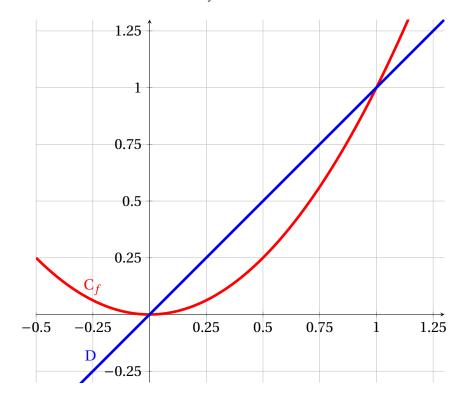
Donc la propriété P_{k+1} est également vraie

<u>Conclusion</u>: La propriété étant initialisée au rang 0 et héréditaire, d'après le principe de récurrence, pour tout entier naturel n, $u_n = \sqrt{n}$

Exercice 3.

On considère la suite (u_n) définie sur \mathbb{N} par $u_0 = \frac{3}{4}$ et $u_{n+1} = u_n^2$.

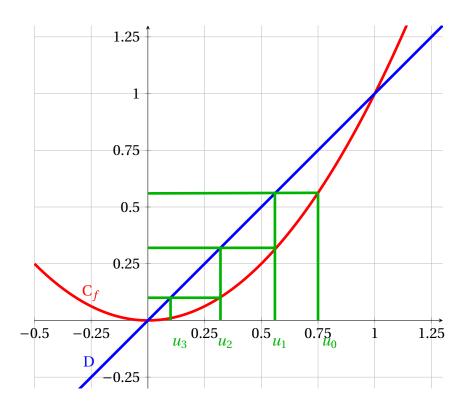
1. Sans les calculer, représenter ci-dessous les quatre premiers termes de cette suite sachant qu'on a déjà tracé la droite D d'équation y = x et la courbe C_f représentant la fonction $f: x \mapsto x^2$.



- 2. Conjecturer le sens de variation de cette suite.
- 3. (a) Démontrer par récurrence que pour tout entier naturel n, $0 < u_{n+1} < u_n < 1$
 - (b) En déduire le sens de variation de la suite (u_n)
 - (c) La suite (u_n) est-elle convergente?

Correction

1.



- 2. la suite (u_n) semble décroissante
- 3. (a) On définit la propriété suivante : pour tout entier naturel n, P_n : $0 < u_{n+1} < u_n < 1$

Initialisation: pour
$$n = 0$$
, on a $u_0 = \frac{3}{4}$ et $u_1 = u_0^2 = \left(\frac{3}{4}\right)^2 = \frac{9}{16}$

D'où on obtient bien $0 < u_1 < u_0 < 1$

Donc la propriété P₀ est vraie

<u>Hérédité</u>: soit un entier naturel k, on suppose que la propriété P_k est vraie (càd $0 < u_{k+1} < u_k < 1$) et montrons que la propriété P_{k+1} est également vraie (càd $0 < u_{k+1} < u_k < 1$)

On sait que $0 < u_{k+1} < u_k < 1$

$$-2+2 < u_k+2 < u_{k+1}+2$$

$$0^2 < (u_{k+1})^2 < (u_n)^2 < 1^2$$
 puisque la fonction carrée est strictement

croissante sur $[0; +\infty[$

$$0 < u_{k+2} < u_{k+1}$$
 puisque $u_{n+1} = u_n^2$

Donc la propriété P_{k+1} est également vraie

<u>Conclusion</u>: La propriété étant initialisée au rang 0 et héréditaire, d'après le principe de récurrence, pour tout entier naturel n, $0 < u_{n+1} < u_n < 1$

- (b) Comme on vient de prouver que pour tout entier naturel n, $0 < u_{n+1} < u_n < 1$ On peut donc en déduire que la suite (u_n) est décroissante et bornée sur [0;1]
- (c) On sait que la suite suite (u_n) est décroissante et minorée par 0 d'après le théorème de convergence, on peut dire que la suite (u_n) est convergente