Nom et prénom :

Exercice 1. 4 points

- 1. (u_n) est la suite géométrique telle que $u_0 = -8$ et de raison 3. Calculer u_4 .
- 2. Soit (u_n) la suite arithmétique telque $u_{10} = 14$ et $u_{25} = 26$. Déterminer la raison de la suite (u_n) .
- 3. (u_n) est la suite arithmétique de premier terme $u_0 = 5$ et de raison r = 3. Calculer $S = u_2 + u_3 + \cdots + u_{25}$.

Correction

1. On sait que (u_n) est la suite géométrique telle que $u_0 = -8$ et de raison 3

Alors
$$u_n = u_0 \times q^n$$
.

On doit calculer $u_4 = u_0 \times q^4 = -8 \times 3^4 = -8 \times 3^2 \times 3^2 = -8 \times 9 \times 9 = -8 \times 81 = -648$

Donc
$$u_4 = -648$$

2. On sait que (u_n) la suite arithmétique telque $u_10 = 14$ et $u_25 = 26$

Alors
$$u_n = u_p + (n-p) \times r$$

D'où
$$u_{25} = u_{10} + (25 - 10) \times r$$
 \iff $26 = 14 + 15r$ \iff $\frac{26 - 14}{15} = r$ \iff $r = \frac{12}{15} = \frac{4}{5}$

Donc la raison est égale à $\frac{4}{5}$

3. On sait que (u_n) est la suite arithmétique de premier terme $u_0 = 5$ et de raison r = 3.

On doit calculer $S = u_2 + u_3 + \cdots + u_{25}$.

Pour rappel, somme d'une suite arithmétique : $S = \text{(nombre de termes)} \times \frac{1 \text{er terme} + \text{dernier}}{2}$

Alors

- le nombre de termes dans cette somme S est 25-2+1=24
- $u_2 = u_0 + 3r = 5 + 3 \times 2 = 5 + 3 = 11$
- $u_{25} = u_0 + 24r = 5 + 3 \times 25 = 5 + 75 = 80$

$$\text{D'où} \, : \, S = 24 \times \frac{11 + 80}{2} = \frac{24 \times 91}{2} = 12 \times 91 = 10 \times 91 + 2 \times 91 = 910 + 182 = 1092$$

Donc |S| = 1092

9

Exercice 2. 4 points

On considère les suites (u_n) définie par $u_0 = 14$ et pour tout entier naturel $n: u_{n+1} = 2u_n - 5$ Et (t_n) définie pour tout entier naturel n par $t_n = u_n - 5$.

- 1. Montrer que la suite (t_n) est une suite géométrique dont on déterminera le premier terme et de raison 2.
- 2. En déduire l'expression de t_n puis celle de u_n en fonction de n.

Correction

Terminale : Spé Math

On a la suite (u_n) définie par $u_0=14$ et pour tout entier naturel $n:u_{n+1}=2u_n-5$ Et le suite (t_n) telque pour tout entier naturel n, on pose $t_n=u_n-5$.

1. On doit montrer que la suite (t_n) est arithmétique, montrons que $t_{n+1} = qt_n$ avec q un nombre réel.

D'après l'énoncé, pour tout entier naturel n:

$$t_{n+1} = u_{n+1} - 5 = 2u_n - 5 - 5 = 2u_n - 10 = 2(u_n - 5) = 2t_n$$

Et son premier terme est $t_0 = u_0 - 5 = 14 - 5 = 9$

Donc la suite (t_n) est donc une suite géométrique de raison q=2 et de premier terme $t_0=9$

2. la suite (t_n) est donc une suite géométrique de raison q=2 et de premier terme $t_0=9$

Alors pour tout entier naturel $n: t_n = v_0 \times q^n = 9 \times 2^n$

De plus
$$t_n = u_n - 5 \iff u_n = t_n + 5$$

Par conséquent, pour tout entier naturel $n: u_n = 9 \times 2^n + 5$

Exercice 3. 8 points

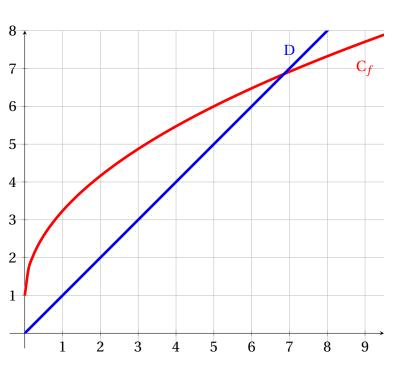
Soit
$$(u_n)$$
 la suite définie par
$$\begin{cases} u_0 = 1 \\ u_{n+1} = \sqrt{5u_n} + 1 \end{cases}$$

Partie A

Sans les calculer, représenter ci-dessous les 6 quatre premiers termes de cette suite sachant qu'on a déjà tracé la droite D d'équation y=x et la courbe C_f représentant la fonction 4 $f: x \longmapsto \sqrt{5x} + 1$.

Conjecturer le sens de variation de cette suite.

.....



Partie B

- 1. Démontrer par récurrence que pour tout entier naturel n, $0 \le u_n < u_{n+1} \le 10$. (Rappel: $1, 4 < \sqrt{2} < 1, 5$)
- 2. En déduire le sens de variation de la suite (u_n) .
- 3. La suite (u_n) est-elle convergente?

Correction

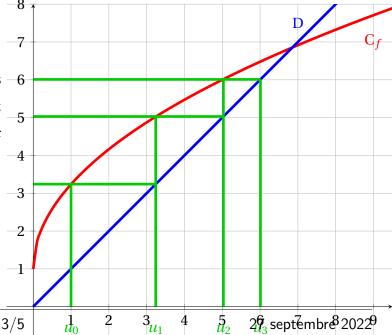
On a la suite (u_n) définie par $u_0 = 1$ et $u_{n+1} = \sqrt{5u_n} + 1$.

Partie A

Sans les calculer, représenter ci-dessous les -6 quatre premiers termes de cette suite sachant qu'on a déjà tracé la droite D d'équation y=x et la courbe C_f représentant la fonction -4 $f: x \longmapsto \sqrt{5x} + 1$.

Conjecturer le sens de variation de cette suite.

la suite (u_n) semble être croissante



Suites et principe de récurrence

Partie B

Terminale : Spé Math

1. On définit la propriété suivante : pour tout entier naturel n, \mathscr{P}_n : $0 \le u_n < u_{n+1} \le 10$

Initialisation: pour
$$n=0$$
, on a $u_0=1$ et $u_1=\sqrt{5u_0}+1=\sqrt{5}+1>1$

D'où on obtient bien $0 < u_0 < u_1 \le 10$

Donc la propriété P₀ est vraie

<u>Hérédité</u> : soit un entier naturel k, on suppose que la propriété P_k est vraie (càd $0 \le u_k < u_{k+1} \le 10$) et montrons que la propriété P_{k+1} est également vraie (càd $0 \le u_{k+1} < u_{k+2} \le 10$)

On sait que $0 \le u_k < u_{k+1} \le 10$

$$0 \le 5u_k < 5u_{k+1} \le 50$$
 puisque on multiplie par 5

 $0 \leq \sqrt{5u_k} < \sqrt{5u_{k+1}} \leq \sqrt{50}$ puisque la fonction racine carrée est strictement croissante sur $[0;+\infty[$

$$1 \leq \sqrt{5u_k} + 1 < \sqrt{5u_{k+1}} + 1 \leq 5\sqrt{2} + 1$$
 puisque on ajoute 1 or $5\sqrt{2} + 1 < 5 \times 1, 5 + 1 = 7, 5 + 1 = 8, 5 < 10$

$$0 < 1 \le \sqrt{5u_k} + 1 < \sqrt{5u_{k+1}} + 1 \le 5\sqrt{2} + 1 < 10$$

Donc la propriété P_{k+1} est également vraie

Conclusion : La propriété étant initialisée au rang 0 et héréditaire, d'après le principe de récurrence, pour tout entier naturel n, $0 \le u_n < u_{n+1} \le 10$

2. Comme on vient de prouver que pour tout entier naturel n, $0 \le u_n < u_{n+1} \le 10$

On peut donc en déduire que la suite (u_n) est croissante

3. On sait que la suite suite (u_n) est croissante et majrée par 10 puisque pour tout entier naturel n,

$$0 \le u_n < u_{n+1} \le 10$$

d'après le théorème de convergence, on peut dire que | la suite (u_n) est convergente

Exercice 4. 4 points

On considère la suite (u_n) définie sur \mathbb{N} par $u_0 = 0$ et $u_{n+1} = u_n + 2n + 2$.

- 1. Calculer les 5 premiers termes de la suite.
- 2. Démontrer par récurrence que pour tout entier naturel n, $u_n = n^2 + n$.

Correction

1. On a
$$u_0 = 3$$

Alors
$$u_1 = u_0 + 2 \times 0 + 2 = 2$$

 $u_2 = u_1 + 2 \times 1 + 2 = 2 + 4 = 6$
 $u_3 = u_2 + 2 \times 2 + 2 = 6 + 6 = 12$

$$u_4 = u_3 + 2 \times 3 + 2 = 12 + 8 = 20$$

2. On définit la propriété suivante : pour tout entier naturel n, P_n : $u_n = n^2 + n$

Initialisation : pour n = 0, on a $u_0 = 0$ et $0^2 + 0 = 0$ donc la propriété P_0 est vraie

<u>Hérédité</u>: soit un entier naturel k, on suppose que la propriété P_k est vraie (càd $u_k = k^2 + k$) et montrons que la propriété P_{k+1} est également vraie (càd $u_{k+1} = (k+1)^2 + k + 1$)

On sait que
$$u_{k+1} = u_k + 2k + 2$$
 et $u_k = k^2 + k$

Alors
$$u_{k+1} = k^2 + k + 2k + 2 = k^2 + 3k + 2$$

Or
$$(k+1)^2 + k + 1 = k^2 + 2k + 1 + k + 1 = k^2 + 3k + 2$$

D'où
$$u_{k+1} = (k+1)^2 + k + 1$$

Donc la propriété \mathbf{P}_{k+1} est également vraie

Conclusion : La propriété étant initialisée au rang 0 et héréditaire, d'après le principe de récurrence,

pour tout entier naturel
$$n$$
, $u_n = n^2 + n$